These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 31331978)
21. Natural Mutations in Streptococcus agalactiae Resulting in Abrogation of β Antigen Production. Vasilyeva A; Santos Sanches I; Florindo C; Dmitriev A PLoS One; 2015; 10(6):e0128426. PubMed ID: 26047354 [TBL] [Abstract][Full Text] [Related]
22. Identification of ClpB, a molecular chaperone involved in the stress tolerance and virulence of Streptococcus agalactiae. Yang L; Wu Z; Ma TY; Zeng H; Chen M; Zhang YA; Zhou Y Vet Res; 2024 May; 55(1):60. PubMed ID: 38750480 [TBL] [Abstract][Full Text] [Related]
23. Comparative proteome analysis of two Streptococcus agalactiae strains from cultured tilapia with different virulence. Li W; Su YL; Mai YZ; Li YW; Mo ZQ; Li AX Vet Microbiol; 2014 May; 170(1-2):135-43. PubMed ID: 24594355 [TBL] [Abstract][Full Text] [Related]
24. Bacterial virulence factors in neonatal sepsis: group B streptococcus. Herbert MA; Beveridge CJ; Saunders NJ Curr Opin Infect Dis; 2004 Jun; 17(3):225-9. PubMed ID: 15166825 [TBL] [Abstract][Full Text] [Related]
25. Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae. Tettelin H; Masignani V; Cieslewicz MJ; Eisen JA; Peterson S; Wessels MR; Paulsen IT; Nelson KE; Margarit I; Read TD; Madoff LC; Wolf AM; Beanan MJ; Brinkac LM; Daugherty SC; DeBoy RT; Durkin AS; Kolonay JF; Madupu R; Lewis MR; Radune D; Fedorova NB; Scanlan D; Khouri H; Mulligan S; Carty HA; Cline RT; Van Aken SE; Gill J; Scarselli M; Mora M; Iacobini ET; Brettoni C; Galli G; Mariani M; Vegni F; Maione D; Rinaudo D; Rappuoli R; Telford JL; Kasper DL; Grandi G; Fraser CM Proc Natl Acad Sci U S A; 2002 Sep; 99(19):12391-6. PubMed ID: 12200547 [TBL] [Abstract][Full Text] [Related]
26. Comparison of virulence factors and capsular types of Streptococcus agalactiae isolated from human and bovine infections. Emaneini M; Khoramian B; Jabalameli F; Abani S; Dabiri H; Beigverdi R Microb Pathog; 2016 Feb; 91():1-4. PubMed ID: 26593104 [TBL] [Abstract][Full Text] [Related]
27. Identification of Streptococcus agalactiae virulence genes in the neonatal rat sepsis model using signature-tagged mutagenesis. Jones AL; Knoll KM; Rubens CE Mol Microbiol; 2000 Sep; 37(6):1444-55. PubMed ID: 10998175 [TBL] [Abstract][Full Text] [Related]
29. Pathogenesis of Streptococcus urinary tract infection depends on bacterial strain and β-hemolysin/cytolysin that mediates cytotoxicity, cytokine synthesis, inflammation and virulence. Leclercq SY; Sullivan MJ; Ipe DS; Smith JP; Cripps AW; Ulett GC Sci Rep; 2016 Jul; 6():29000. PubMed ID: 27383371 [TBL] [Abstract][Full Text] [Related]
30. The novel fibrinogen-binding protein FbsB promotes Streptococcus agalactiae invasion into epithelial cells. Gutekunst H; Eikmanns BJ; Reinscheid DJ Infect Immun; 2004 Jun; 72(6):3495-504. PubMed ID: 15155657 [TBL] [Abstract][Full Text] [Related]
31. The cadDX operon contributes to cadmium resistance, oxidative stress resistance, and virulence in zoonotic streptococci. Zhu X; Liang Z; Ma J; Huang J; Wang L; Yao H; Wu Z Vet Res; 2024 Sep; 55(1):119. PubMed ID: 39334407 [TBL] [Abstract][Full Text] [Related]
32. CRISPR-dependent endogenous gene regulation is required for virulence in piscine Dong Y; Ma K; Cao Q; Huang H; Nie M; Liu G; Jiang M; Lu C; Liu Y Emerg Microbes Infect; 2021 Dec; 10(1):2113-2124. PubMed ID: 34727007 [TBL] [Abstract][Full Text] [Related]
33. The sensor histidine kinase RgfC affects group B streptococcal virulence factor expression independent of its response regulator RgfA. Gendrin C; Lembo A; Whidbey C; Burnside K; Berry J; Ngo L; Banerjee A; Xue L; Arrington J; Doran KS; Tao WA; Rajagopal L Infect Immun; 2015 Mar; 83(3):1078-88. PubMed ID: 25561709 [TBL] [Abstract][Full Text] [Related]
34. CovS/CovR of group B streptococcus: a two-component global regulatory system involved in virulence. Lamy MC; Zouine M; Fert J; Vergassola M; Couve E; Pellegrini E; Glaser P; Kunst F; Msadek T; Trieu-Cuot P; Poyart C Mol Microbiol; 2004 Dec; 54(5):1250-68. PubMed ID: 15554966 [TBL] [Abstract][Full Text] [Related]
35. Reactive oxygen species generation mediated by NADPH oxidase and PI3K/Akt pathways contribute to invasion of Streptococcus agalactiae in human endothelial cells. Oliveira JSS; Santos GDS; Moraes JA; Saliba AM; Barja-Fidalgo TC; Mattos-Guaraldi AL; Nagao PE Mem Inst Oswaldo Cruz; 2018; 113(6):e140421. PubMed ID: 29641644 [TBL] [Abstract][Full Text] [Related]
36. Two novel functions of hyaluronidase from Streptococcus agalactiae are enhanced intracellular survival and inhibition of proinflammatory cytokine expression. Wang Z; Guo C; Xu Y; Liu G; Lu C; Liu Y Infect Immun; 2014 Jun; 82(6):2615-25. PubMed ID: 24711564 [TBL] [Abstract][Full Text] [Related]
37. Group B Streptococcus Biofilm Regulatory Protein A Contributes to Bacterial Physiology and Innate Immune Resistance. Patras KA; Derieux J; Al-Bassam MM; Adiletta N; Vrbanac A; Lapek JD; Zengler K; Gonzalez DJ; Nizet V J Infect Dis; 2018 Oct; 218(10):1641-1652. PubMed ID: 29868829 [TBL] [Abstract][Full Text] [Related]
38. Ma K; Cao Q; Luo S; Wang Z; Liu G; Lu C; Liu Y Infect Immun; 2018 Mar; 86(3):. PubMed ID: 29229728 [TBL] [Abstract][Full Text] [Related]
39. Aspects of the natural history and virulence of S. agalactiae infection in Nile tilapia. Mian GF; Godoy DT; Leal CA; Yuhara TY; Costa GM; Figueiredo HC Vet Microbiol; 2009 Apr; 136(1-2):180-3. PubMed ID: 19042097 [TBL] [Abstract][Full Text] [Related]