BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 31331983)

  • 1. TAF-ChIP: an ultra-low input approach for genome-wide chromatin immunoprecipitation assay.
    Akhtar J; More P; Albrecht S; Marini F; Kaiser W; Kulkarni A; Wojnowski L; Fontaine JF; Andrade-Navarro MA; Silies M; Berger C
    Life Sci Alliance; 2019 Aug; 2(4):. PubMed ID: 31331983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-Wide Profiling of Histone Modifications with ChIP-Seq.
    Ricci WA; Levin L; Zhang X
    Methods Mol Biol; 2020; 2072():101-117. PubMed ID: 31541441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ChIP-Seq from Limited Starting Material of K562 Cells and
    Akhtar J; More P; Albrecht S
    Bio Protoc; 2020 Feb; 10(4):e3520. PubMed ID: 33654745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profiling the Epigenetic Landscape of the Tumor Microenvironment Using Chromatin Immunoprecipitation Sequencing.
    Fukano M; Alzial G; Lambert R; Deblois G
    Methods Mol Biol; 2023; 2614():313-348. PubMed ID: 36587133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking Histone Modifications in Embryos and Low-Input Samples Using Ultrasensitive STAR ChIP-Seq.
    Zhang B; Peng X; Xu F; Xie W
    Methods Mol Biol; 2021; 2214():241-252. PubMed ID: 32944914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Comparison of Multiple Chromatin Immunoprecipitation-Sequencing (ChIP-seq) Experiments with spikChIP.
    Blanco E; Ballaré C; Di Croce L; Aranda S
    Methods Mol Biol; 2023; 2624():55-72. PubMed ID: 36723809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Integrated and Semiautomated Microscaled Approach to Profile Cis-Regulatory Elements by Histone Modification ChIP-Seq for Large-Scale Epigenetic Studies.
    Youhanna Jankeel D; Cayford J; Schmiedel BJ; Vijayanand P; Seumois G
    Methods Mol Biol; 2018; 1799():303-326. PubMed ID: 29956160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. aFARP-ChIP-seq, a convenient and reliable method for genome profiling in as few as 100 cells with a capability for multiplexing ChIP-seq.
    Liu W; Yue S; Zheng X; Hu M; Cao J; Zheng Y
    Epigenetics; 2019 Sep; 14(9):877-893. PubMed ID: 31169445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations.
    Brind'Amour J; Liu S; Hudson M; Chen C; Karimi MM; Lorincz MC
    Nat Commun; 2015 Jan; 6():6033. PubMed ID: 25607992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Going low to reach high: Small-scale ChIP-seq maps new terrain.
    Fosslie M; Manaf A; Lerdrup M; Hansen K; Gilfillan GD; Dahl JA
    Wiley Interdiscip Rev Syst Biol Med; 2020 Jan; 12(1):e1465. PubMed ID: 31478357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ChIP-Sequencing in
    Hontelez S; van Kruijsbergen I; Veenstra GJC
    Cold Spring Harb Protoc; 2019 Jan; 2019(1):. PubMed ID: 30042137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BAMscale: quantification of next-generation sequencing peaks and generation of scaled coverage tracks.
    Pongor LS; Gross JM; Vera Alvarez R; Murai J; Jang SM; Zhang H; Redon C; Fu H; Huang SY; Thakur B; Baris A; Marino-Ramirez L; Landsman D; Aladjem MI; Pommier Y
    Epigenetics Chromatin; 2020 Apr; 13(1):21. PubMed ID: 32321568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous Tagmentation-Based Detection of ChIP/ATAC Signal with Bisulfite Sequencing.
    Lhoumaud P; Skok J
    Methods Mol Biol; 2021; 2351():337-352. PubMed ID: 34382199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Native internally calibrated chromatin immunoprecipitation for quantitative studies of histone post-translational modifications.
    Grzybowski AT; Shah RN; Richter WF; Ruthenburg AJ
    Nat Protoc; 2019 Dec; 14(12):3275-3302. PubMed ID: 31723301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A plug and play microfluidic platform for standardized sensitive low-input chromatin immunoprecipitation.
    Dirks RAM; Thomas PC; Wu H; Jones RC; Stunnenberg HG; Marks H
    Genome Res; 2021 May; 31(5):919-933. PubMed ID: 33707229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin Immunoprecipitation Followed by Next-Generation Sequencing (ChIP-Seq) Analysis in Ewing Sarcoma.
    Kerdivel G; Boeva V
    Methods Mol Biol; 2021; 2226():265-284. PubMed ID: 33326109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A High-Throughput Chromatin Immunoprecipitation Sequencing Approach to Study the Role of MYC on the Epigenetic Landscape.
    Fagnocchi L; Zippo A
    Methods Mol Biol; 2021; 2318():187-208. PubMed ID: 34019291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ChIP-Seq Assays from Mammalian Cartilage and Chondrocytes.
    Yamakawa A; Hojo H; Ohba S
    Methods Mol Biol; 2021; 2245():167-178. PubMed ID: 33315202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A parallelized, automated platform enabling individual or sequential ChIP of histone marks and transcription factors.
    Dainese R; Gardeux V; Llimos G; Alpern D; Jiang JY; Meireles-Filho ACA; Deplancke B
    Proc Natl Acad Sci U S A; 2020 Jun; 117(24):13828-13838. PubMed ID: 32461370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protocol to apply spike-in ChIP-seq to capture massive histone acetylation in human cells.
    Wu D; Wang L; Huang H
    STAR Protoc; 2021 Sep; 2(3):100681. PubMed ID: 34337446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.