These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 31332006)

  • 1. Membraneless polyester microdroplets as primordial compartments at the origins of life.
    Jia TZ; Chandru K; Hongo Y; Afrin R; Usui T; Myojo K; Cleaves HJ
    Proc Natl Acad Sci U S A; 2019 Aug; 116(32):15830-15835. PubMed ID: 31332006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporation of Basic α-Hydroxy Acid Residues into Primitive Polyester Microdroplets for RNA Segregation.
    Jia TZ; Bapat NV; Verma A; Mamajanov I; Cleaves HJ; Chandru K
    Biomacromolecules; 2021 Apr; 22(4):1484-1493. PubMed ID: 33663210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent progress in primitive polyester synthesis and membraneless microdroplet assembly.
    Z Jia T; Chandru K
    Biophys Physicobiol; 2023; 20(1):e200012. PubMed ID: 37234852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactions Driven by Primitive Nonbiological Polyesters.
    Poddar A; Satthiyasilan N; Wang PH; Chen C; Yi R; Chandru K; Jia TZ
    Acc Chem Res; 2024 Aug; 57(15):2048-2057. PubMed ID: 39013010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Primitive membraneless compartments as a window into the earliest cells.
    Jia TZ
    Biophys Rev; 2023 Dec; 15(6):1897-1900. PubMed ID: 38192354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic and Biophysical Methods to Determine Differential Salt-Uptake by Primitive Membraneless Polyester Microdroplets.
    Chen C; Yi R; Igisu M; Sakaguchi C; Afrin R; Potiszil C; Kunihiro T; Kobayashi K; Nakamura E; Ueno Y; Antunes A; Wang A; Chandru K; Hao J; Jia TZ
    Small Methods; 2023 Dec; 7(12):e2300119. PubMed ID: 37203261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyesters as a Model System for Building Primitive Biologies from Non-Biological Prebiotic Chemistry.
    Chandru K; Mamajanov I; Cleaves HJ; Jia TZ
    Life (Basel); 2020 Jan; 10(1):. PubMed ID: 31963928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prebiotically-relevant low polyion multivalency can improve functionality of membraneless compartments.
    Cakmak FP; Choi S; Meyer MO; Bevilacqua PC; Keating CD
    Nat Commun; 2020 Nov; 11(1):5949. PubMed ID: 33230101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-associative phase separation in an evaporating droplet as a model for prebiotic compartmentalization.
    Guo W; Kinghorn AB; Zhang Y; Li Q; Poonam AD; Tanner JA; Shum HC
    Nat Commun; 2021 May; 12(1):3194. PubMed ID: 34045455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical Principles and Extant Biology Reveal Roles for RNA-Containing Membraneless Compartments in Origins of Life Chemistry.
    Poudyal RR; Pir Cakmak F; Keating CD; Bevilacqua PC
    Biochemistry; 2018 May; 57(17):2509-2519. PubMed ID: 29560725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organization and Compartmentalization by Lipid Membranes Promote Reactions Related to the Origin of Cellular Life.
    Paleos CM
    Astrobiology; 2019 Apr; 19(4):547-552. PubMed ID: 30431329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prebiotic Protocell Model Based on Dynamic Protein Membranes Accommodating Anabolic Reactions.
    Schreiber A; Huber MC; Schiller SM
    Langmuir; 2019 Jul; 35(29):9593-9610. PubMed ID: 31287709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prebiotic chemistry in clouds.
    Oberbeck VR; Marshall J; Shen T
    J Mol Evol; 1991; 32():296-303. PubMed ID: 11538260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How Droplets Can Accelerate Reactions─Coacervate Protocells as Catalytic Microcompartments.
    Smokers IBA; Visser BS; Slootbeek AD; Huck WTS; Spruijt E
    Acc Chem Res; 2024 Jul; 57(14):1885-1895. PubMed ID: 38968602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the origin of single chirality of amino acids and sugars in biogenesis.
    Hein JE; Blackmond DG
    Acc Chem Res; 2012 Dec; 45(12):2045-54. PubMed ID: 22353168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A material-based panspermia hypothesis: The potential of polymer gels and membraneless droplets.
    Sithamparam M; Satthiyasilan N; Chen C; Jia TZ; Chandru K
    Biopolymers; 2022 May; 113(5):e23486. PubMed ID: 35148427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In search of a primitive signaling code.
    Maraldi NM
    Biosystems; 2019 Sep; 183():103984. PubMed ID: 31201829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonreplicating protocells.
    Del Bianco C; Mansy SS
    Acc Chem Res; 2012 Dec; 45(12):2125-30. PubMed ID: 22834912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Global Scale Scenario for Prebiotic Chemistry: Silica-Based Self-Assembled Mineral Structures and Formamide.
    Saladino R; Botta G; Bizzarri BM; Di Mauro E; Garcia Ruiz JM
    Biochemistry; 2016 May; 55(19):2806-11. PubMed ID: 27115539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prebiotic Evolution and Self-Assembly of Nucleic Acids.
    Lazcano A
    ACS Nano; 2018 Oct; 12(10):9643-9647. PubMed ID: 30347987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.