These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 31332013)

  • 41. Maize Plants Recognize Herbivore-Associated Cues from Caterpillar Frass.
    Ray S; Gaffor I; Acevedo FE; Helms A; Chuang WP; Tooker J; Felton GW; Luthe DS
    J Chem Ecol; 2015 Sep; 41(9):781-92. PubMed ID: 26306592
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Flooding and Herbivory Interact to Alter Volatile Organic Compound Emissions in Two Maize Hybrids.
    Ngumbi EN; Ugarte CM
    J Chem Ecol; 2021 Jul; 47(7):707-718. PubMed ID: 34125370
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An amino acid substitution inhibits specialist herbivore production of an antagonist effector and recovers insect-induced plant defenses.
    Schmelz EA; Huffaker A; Carroll MJ; Alborn HT; Ali JG; Teal PE
    Plant Physiol; 2012 Nov; 160(3):1468-78. PubMed ID: 23008466
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Attraction of Spodoptera frugiperda larvae to volatiles from herbivore-damaged maize seedlings.
    Carroll MJ; Schmelz EA; Meagher RL; Teal PE
    J Chem Ecol; 2006 Sep; 32(9):1911-24. PubMed ID: 16902828
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Host plant species determines symbiotic bacterial community mediating suppression of plant defenses.
    Chung SH; Scully ED; Peiffer M; Geib SM; Rosa C; Hoover K; Felton GW
    Sci Rep; 2017 Jan; 7():39690. PubMed ID: 28045052
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Helicoverpa zea gut-associated bacteria indirectly induce defenses in tomato by triggering a salivary elicitor(s).
    Wang J; Peiffer M; Hoover K; Rosa C; Zeng R; Felton GW
    New Phytol; 2017 May; 214(3):1294-1306. PubMed ID: 28170113
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Host-Specific larval lepidopteran mortality to pathogenic Serratia mediated by poor diet.
    Mason CJ; Peiffer M; Felton GW; Hoover K
    J Invertebr Pathol; 2022 Oct; 194():107818. PubMed ID: 35973510
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Complex Relationships at the Intersection of Insect Gut Microbiomes and Plant Defenses.
    Mason CJ
    J Chem Ecol; 2020 Aug; 46(8):793-807. PubMed ID: 32537721
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison of Gut Bacterial Communities of Fall Armyworm (
    Lv D; Liu X; Dong Y; Yan Z; Zhang X; Wang P; Yuan X; Li Y
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681926
    [No Abstract]   [Full Text] [Related]  

  • 50. Increased maize growth and P uptake promoted by arbuscular mycorrhizal fungi coincide with higher foliar herbivory and larval biomass of the Fall Armyworm Spodoptera frugiperda.
    Real-Santillán RO; Del-Val E; Cruz-Ortega R; Contreras-Cornejo HÁ; González-Esquivel CE; Larsen J
    Mycorrhiza; 2019 Nov; 29(6):615-622. PubMed ID: 31724088
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cytochrome P450s genes CYP321A9 and CYP9A58 contribute to host plant adaptation in the fall armyworm Spodoptera frugiperda.
    He L; Shi Y; Ding W; Huang H; He H; Xue J; Gao Q; Zhang Z; Li Y; Qiu L
    Pest Manag Sci; 2023 May; 79(5):1783-1790. PubMed ID: 36627818
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Degradation of the S. frugiperda peritrophic matrix by an inducible maize cysteine protease.
    Mohan S; Ma PW; Pechan T; Bassford ER; Williams WP; Luthe DS
    J Insect Physiol; 2006 Jan; 52(1):21-8. PubMed ID: 16243350
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pathogenicity of bacteria isolated from gut of Spodoptera litura (Lepidoptera: Noctuidae) and fitness costs of insect associated with consumption of bacteria.
    Thakur A; Dhammi P; Saini HS; Kaur S
    J Invertebr Pathol; 2015 May; 127():38-46. PubMed ID: 25725116
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identification of a bioactive Bowman-Birk inhibitor from an insect-resistant early maize inbred.
    Johnson ET; Skory C; Dowd PF
    J Agric Food Chem; 2014 Jun; 62(24):5458-65. PubMed ID: 24869634
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lessons from the Far End: Caterpillar FRASS-Induced Defenses in Maize, Rice, Cabbage, and Tomato.
    Ray S; Basu S; Rivera-Vega LJ; Acevedo FE; Louis J; Felton GW; Luthe DS
    J Chem Ecol; 2016 Nov; 42(11):1130-1141. PubMed ID: 27704315
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of Nitrogen Supply on Induced Defense in Maize (
    Wang W; Wang X; Liao H; Feng Y; Guo Y; Shu Y; Wang J
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142369
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Plant resistance and its effect on the peritrophic membrane of southwestern corn borer (Lepidoptera: Crambidae) larvae.
    Daves CA; Williams WP; Davis FM; Baker GT; Ma PW; Monroe WA; Mohan S
    J Econ Entomol; 2007 Jun; 100(3):976-83. PubMed ID: 17598564
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Silicon-Mediated Enhancement of Herbivore Resistance in Agricultural Crops.
    Acevedo FE; Peiffer M; Ray S; Tan CW; Felton GW
    Front Plant Sci; 2021; 12():631824. PubMed ID: 33679847
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Physiological, nutritional, and biochemical bases of corn resistance to foliage-feeding fall armyworm.
    Chen Y; Ni X; Buntin GD
    J Chem Ecol; 2009 Mar; 35(3):297-306. PubMed ID: 19221843
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fall Armyworm Gut Bacterial Diversity Associated with Different Developmental Stages, Environmental Habitats, and Diets.
    Li DD; Li JY; Hu ZQ; Liu TX; Zhang SZ
    Insects; 2022 Aug; 13(9):. PubMed ID: 36135463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.