These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

458 related articles for article (PubMed ID: 31332069)

  • 21. Structures of the mycobacterial membrane protein MmpL3 reveal its mechanism of lipid transport.
    Su CC; Klenotic PA; Cui M; Lyu M; Morgan CE; Yu EW
    PLoS Biol; 2021 Aug; 19(8):e3001370. PubMed ID: 34383749
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synergistic Interactions of MmpL3 Inhibitors with Antitubercular Compounds
    Li W; Sanchez-Hidalgo A; Jones V; de Moura VC; North EJ; Jackson M
    Antimicrob Agents Chemother; 2017 Apr; 61(4):. PubMed ID: 28115355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antigen 85C inhibition restricts Mycobacterium tuberculosis growth through disruption of cord factor biosynthesis.
    Warrier T; Tropis M; Werngren J; Diehl A; Gengenbacher M; Schlegel B; Schade M; Oschkinat H; Daffe M; Hoffner S; Eddine AN; Kaufmann SH
    Antimicrob Agents Chemother; 2012 Apr; 56(4):1735-43. PubMed ID: 22290959
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Variants of katG, inhA and nat genes are not associated with mutations in efflux pump genes (mmpL3 and mmpL7) in isoniazid-resistant clinical isolates of Mycobacterium tuberculosis from India.
    Unissa AN; Dusthackeer VNA; Kumar MP; Nagarajan P; Sukumar S; Kumari VI; Lakshmi AR; Hanna LE
    Tuberculosis (Edinb); 2017 Dec; 107():144-148. PubMed ID: 29050763
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Altered drug efflux under iron deprivation unveils abrogated MmpL3 driven mycolic acid transport and fluidity in mycobacteria.
    Pal R; Hameed S; Fatima Z
    Biometals; 2019 Feb; 32(1):49-63. PubMed ID: 30430296
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mutation of katG in a clinical isolate of Mycobacterium tuberculosis: effects on catalase-peroxidase for isoniazid activation.
    Purkan ; Ihsanawati ; Natalia D; Syah YM; Retnoningrum DS; Kusuma HS
    Ukr Biochem J; 2016; 88(5):71-81. PubMed ID: 29235814
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct Inhibition of MmpL3 by Novel Antitubercular Compounds.
    Li W; Stevens CM; Pandya AN; Darzynkiewicz Z; Bhattarai P; Tong W; Gonzalez-Juarrero M; North EJ; Zgurskaya HI; Jackson M
    ACS Infect Dis; 2019 Jun; 5(6):1001-1012. PubMed ID: 30882198
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure-based design of anti-mycobacterial drug leads that target the mycolic acid transporter MmpL3.
    Hu T; Yang X; Liu F; Sun S; Xiong Z; Liang J; Yang X; Wang H; Yang X; Guddat LW; Yang H; Rao Z; Zhang B
    Structure; 2022 Oct; 30(10):1395-1402.e4. PubMed ID: 35981536
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two-Way Regulation of MmpL3 Expression Identifies and Validates Inhibitors of MmpL3 Function in
    Grover S; Engelhart CA; Pérez-Herrán E; Li W; Abrahams KA; Papavinasasundaram K; Bean JM; Sassetti CM; Mendoza-Losana A; Besra GS; Jackson M; Schnappinger D
    ACS Infect Dis; 2021 Jan; 7(1):141-152. PubMed ID: 33319550
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tetrahydropyrazolo[1,5-a]pyrimidine-3-carboxamide and N-benzyl-6',7'-dihydrospiro[piperidine-4,4'-thieno[3,2-c]pyran] analogues with bactericidal efficacy against Mycobacterium tuberculosis targeting MmpL3.
    Remuiñán MJ; Pérez-Herrán E; Rullás J; Alemparte C; Martínez-Hoyos M; Dow DJ; Afari J; Mehta N; Esquivias J; Jiménez E; Ortega-Muro F; Fraile-Gabaldón MT; Spivey VL; Loman NJ; Pallen MJ; Constantinidou C; Minick DJ; Cacho M; Rebollo-López MJ; González C; Sousa V; Angulo-Barturen I; Mendoza-Losana A; Barros D; Besra GS; Ballell L; Cammack N
    PLoS One; 2013; 8(4):e60933. PubMed ID: 23613759
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MmpL3 Inhibitors: Diverse Chemical Scaffolds Inhibit the Same Target.
    Poce G; Consalvi S; Biava M
    Mini Rev Med Chem; 2016; 16(16):1274-1283. PubMed ID: 26776226
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis and evaluation of in vitro antimycobacterial activity of novel 1H-benzo[d]imidazole derivatives and analogues.
    Gobis K; Foks H; Serocki M; Augustynowicz-Kopeć E; Napiórkowska A
    Eur J Med Chem; 2015 Jan; 89():13-20. PubMed ID: 25462221
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural basis of trehalose recognition by the mycobacterial LpqY-SugABC transporter.
    Furze CM; Delso I; Casal E; Guy CS; Seddon C; Brown CM; Parker HL; Radhakrishnan A; Pacheco-Gomez R; Stansfeld PJ; Angulo J; Cameron AD; Fullam E
    J Biol Chem; 2021; 296():100307. PubMed ID: 33476646
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cyclipostins and cyclophostin analogs inhibit the antigen 85C from
    Viljoen A; Richard M; Nguyen PC; Fourquet P; Camoin L; Paudal RR; Gnawali GR; Spilling CD; Cavalier JF; Canaan S; Blaise M; Kremer L
    J Biol Chem; 2018 Feb; 293(8):2755-2769. PubMed ID: 29301937
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The MmpL3 interactome reveals a complex crosstalk between cell envelope biosynthesis and cell elongation and division in mycobacteria.
    Belardinelli JM; Stevens CM; Li W; Tan YZ; Jones V; Mancia F; Zgurskaya HI; Jackson M
    Sci Rep; 2019 Jul; 9(1):10728. PubMed ID: 31341202
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence for a partial redundancy of the fibronectin-binding proteins for the transfer of mycoloyl residues onto the cell wall arabinogalactan termini of Mycobacterium tuberculosis.
    Puech V; Guilhot C; Perez E; Tropis M; Armitige LY; Gicquel B; Daffé M
    Mol Microbiol; 2002 May; 44(4):1109-22. PubMed ID: 12010501
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MmpL3 is the flippase for mycolic acids in mycobacteria.
    Xu Z; Meshcheryakov VA; Poce G; Chng SS
    Proc Natl Acad Sci U S A; 2017 Jul; 114(30):7993-7998. PubMed ID: 28698380
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemical Genetic Interaction Profiling Reveals Determinants of Intrinsic Antibiotic Resistance in Mycobacterium tuberculosis.
    Xu W; DeJesus MA; Rücker N; Engelhart CA; Wright MG; Healy C; Lin K; Wang R; Park SW; Ioerger TR; Schnappinger D; Ehrt S
    Antimicrob Agents Chemother; 2017 Dec; 61(12):. PubMed ID: 28893793
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glutamate Racemase Is the Primary Target of β-Chloro-d-Alanine in Mycobacterium tuberculosis.
    Prosser GA; Rodenburg A; Khoury H; de Chiara C; Howell S; Snijders AP; de Carvalho LP
    Antimicrob Agents Chemother; 2016 Oct; 60(10):6091-9. PubMed ID: 27480853
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Specifically Targeting Mtb Cell-Wall and TMM Transporter: The Development of MmpL3 Inhibitors.
    Luo Q; Duan H; Yan H; Liu X; Peng L; Hu Y; Liu W; Liang L; Shi H; Zhao G; Hu J
    Curr Protein Pept Sci; 2021 Oct; 22(4):290-303. PubMed ID: 33882806
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.