These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 31332259)

  • 1. Ex Vivo and In Vivo Biocompatibility Assessment (Blood and Tissue) of Three-Dimensional Bacterial Nanocellulose Biomaterials for Soft Tissue Implants.
    Osorio M; Cañas A; Puerta J; Díaz L; Naranjo T; Ortiz I; Castro C
    Sci Rep; 2019 Jul; 9(1):10553. PubMed ID: 31332259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel surface modification of three-dimensional bacterial nanocellulose with cell-derived adhesion proteins for soft tissue engineering.
    Osorio M; Ortiz I; Gañán P; Naranjo T; Zuluaga R; van Kooten TG; Castro C
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():697-705. PubMed ID: 30948106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Addition of Various Cellulosic Components to Bacterial Nanocellulose: A Comparison of Surface Qualities and Crystalline Properties.
    Bang WY; Kim DH; Kang MD; Yang J; Huh T; Lim YW; Jung YH
    J Microbiol Biotechnol; 2021 Oct; 31(10):1366-1372. PubMed ID: 34319261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement.
    Nimeskern L; Martínez Ávila H; Sundberg J; Gatenholm P; Müller R; Stok KS
    J Mech Behav Biomed Mater; 2013 Jun; 22():12-21. PubMed ID: 23611922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial nanocellulose as a new patch material for closure of ventricular septal defects in a pig model.
    Lang N; Merkel E; Fuchs F; Schumann D; Klemm D; Kramer F; Mayer-Wagner S; Schroeder C; Freudenthal F; Netz H; Kozlik-Feldmann R; Sigler M
    Eur J Cardiothorac Surg; 2015 Jun; 47(6):1013-21. PubMed ID: 25064053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of novel three-dimensional scaffolds based on bacterial nanocellulose for tissue engineering and regenerative medicine: Effect of processing methods, pore size, and surface area.
    Osorio M; Fernández-Morales P; Gañán P; Zuluaga R; Kerguelen H; Ortiz I; Castro C
    J Biomed Mater Res A; 2019 Feb; 107(2):348-359. PubMed ID: 30421501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicochemical Properties and In Vitro Biocompatibility of Three Bacterial Nanocellulose Conduits for Blood Vessel Applications.
    Bao L; Tang J; Hong FF; Lu X; Chen L
    Carbohydr Polym; 2020 Jul; 239():116246. PubMed ID: 32414454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial nanocellulose enables auxetic supporting implants.
    Ajdary R; Abidnejad R; Lehtonen J; Kuula J; Raussi-Lehto E; Kankuri E; Tardy B; Rojas OJ
    Carbohydr Polym; 2022 May; 284():119198. PubMed ID: 35287913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization of plasmids in bacterial nanocellulose as gene activated matrix.
    Pötzinger Y; Rahnfeld L; Kralisch D; Fischer D
    Carbohydr Polym; 2019 Apr; 209():62-73. PubMed ID: 30732826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants.
    Ahrem H; Pretzel D; Endres M; Conrad D; Courseau J; Müller H; Jaeger R; Kaps C; Klemm DO; Kinne RW
    Acta Biomater; 2014 Mar; 10(3):1341-53. PubMed ID: 24334147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophilic 3D Interconnected Network of Bacterial Nanocellulose/Black Titania Photothermal Foams as an Efficient Interfacial Solar Evaporator.
    Nabeela K; Thorat MN; Backer SN; Ramachandran AM; Thomas RT; Preethikumar G; Mohamed AP; Asok A; Dastager SG; Pillai S
    ACS Appl Bio Mater; 2021 May; 4(5):4373-4383. PubMed ID: 35006849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine.
    Moritz S; Wiegand C; Wesarg F; Hessler N; Müller FA; Kralisch D; Hipler UC; Fischer D
    Int J Pharm; 2014 Aug; 471(1-2):45-55. PubMed ID: 24792978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration.
    Martínez Ávila H; Schwarz S; Feldmann EM; Mantas A; von Bomhard A; Gatenholm P; Rotter N
    Appl Microbiol Biotechnol; 2014 Sep; 98(17):7423-35. PubMed ID: 24866945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimicrobial functionalization of bacterial nanocellulose by loading with polihexanide and povidone-iodine.
    Wiegand C; Moritz S; Hessler N; Kralisch D; Wesarg F; Müller FA; Fischer D; Hipler UC
    J Mater Sci Mater Med; 2015 Oct; 26(10):245. PubMed ID: 26411441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial nanocellulose loaded with bromelain and nisin as a promising bioactive material for wound debridement.
    Jančič U; Trček J; Verestiuc L; Vukomanović M; Gorgieva S
    Int J Biol Macromol; 2024 May; 266(Pt 2):131329. PubMed ID: 38574906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel approach for efficient fabrication of chitosan nanoparticles-embedded bacterial nanocellulose conduits.
    Wei Z; Pan P; Hong FF; Cao Z; Ji Y; Chen L
    Carbohydr Polym; 2021 Jul; 264():118002. PubMed ID: 33910735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications.
    Xue Y; Mou Z; Xiao H
    Nanoscale; 2017 Oct; 9(39):14758-14781. PubMed ID: 28967940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of dehydration/rehydration of bacterial nanocellulose on its tensile strength and physicochemical properties.
    Stanisławska A; Staroszczyk H; Szkodo M
    Carbohydr Polym; 2020 May; 236():116023. PubMed ID: 32172842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loading of bacterial nanocellulose hydrogels with proteins using a high-speed technique.
    Müller A; Wesarg F; Hessler N; Müller FA; Kralisch D; Fischer D
    Carbohydr Polym; 2014 Jun; 106():410-3. PubMed ID: 24721096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural changes of bacterial nanocellulose pellicles induced by genetic modification of Komagataeibacter hansenii ATCC 23769.
    Jacek P; Ryngajłło M; Bielecki S
    Appl Microbiol Biotechnol; 2019 Jul; 103(13):5339-5353. PubMed ID: 31037382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.