These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31332426)

  • 61. Potential impact of biochar types and microbial inoculants on growth of onion plant in differently textured and phosphorus limited soils.
    Rafique M; Ortas I; Ahmed IAM; Rizwan M; Afridi MS; Sultan T; Chaudhary HJ
    J Environ Manage; 2019 Oct; 247():672-680. PubMed ID: 31279144
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Linking shifts in species composition induced by grazing with root traits for phosphorus acquisition in a typical steppe in Inner Mongolia.
    Yu RP; Zhang WP; Yu YC; Yu SB; Lambers H; Li L
    Sci Total Environ; 2020 Apr; 712():136495. PubMed ID: 31945536
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effects of soil type and light on height growth, biomass partitioning, and nitrogen dynamics on 22 species of tropical dry forest tree seedlings: Comparisons between legumes and nonlegumes.
    Smith-Martin CM; Gei MG; Bergstrom E; Becklund KK; Becknell JM; Waring BG; Werden LK; Powers JS
    Am J Bot; 2017 Mar; 104(3):399-410. PubMed ID: 28341631
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Dinitrogen-fixing Acacia species from phosphorus-impoverished soils resorb leaf phosphorus efficiently.
    He H; Bleby TM; Veneklaas EJ; Lambers H
    Plant Cell Environ; 2011 Dec; 34(12):2060-70. PubMed ID: 21819412
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Plant nutrient-acquisition strategies change with soil age.
    Lambers H; Raven JA; Shaver GR; Smith SE
    Trends Ecol Evol; 2008 Feb; 23(2):95-103. PubMed ID: 18191280
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Leaf Phosphorus Concentration Regulates the Development of Cluster Roots and Exudation of Carboxylates in
    Zhao X; Lyu Y; Jin K; Lambers H; Shen J
    Front Plant Sci; 2020; 11():610591. PubMed ID: 33519868
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Phosphorus facilitation and covariation of root traits in steppe species.
    Yu RP; Li XX; Xiao ZH; Lambers H; Li L
    New Phytol; 2020 Jun; 226(5):1285-1298. PubMed ID: 32083760
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest.
    Alvarez-Clare S; Mack MC; Brooks M
    Ecology; 2013 Jul; 94(7):1540-51. PubMed ID: 23951714
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fine root responses to temporal nutrient heterogeneity and competition in seedlings of two tree species with different rooting strategies.
    Wang P; Shu M; Mou P; Weiner J
    Ecol Evol; 2018 Mar; 8(6):3367-3375. PubMed ID: 29607031
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effects of Soil Microbes on Functional Traits of Loblolly Pine (
    Ulrich DEM; Sevanto S; Peterson S; Ryan M; Dunbar J
    Front Plant Sci; 2019; 10():1643. PubMed ID: 31998333
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Plant Species Complementarity in Low-Fertility Degraded Soil.
    Wei Z; Maxwell T; Robinson B; Dickinson N
    Plants (Basel); 2022 May; 11(10):. PubMed ID: 35631795
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Nutritional regulation of root development.
    Ruiz Herrera LF; Shane MW; López-Bucio J
    Wiley Interdiscip Rev Dev Biol; 2015; 4(4):431-43. PubMed ID: 25760021
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Eudicots from severely phosphorus-impoverished environments preferentially allocate phosphorus to their mesophyll.
    Guilherme Pereira C; Clode PL; Oliveira RS; Lambers H
    New Phytol; 2018 May; 218(3):959-973. PubMed ID: 29446835
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Co-optimization of axial root phenotypes for nitrogen and phosphorus acquisition in common bean.
    Rangarajan H; Postma JA; Lynch JP
    Ann Bot; 2018 Aug; 122(3):485-499. PubMed ID: 29982363
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Stem, root, and older leaf N:P ratios are more responsive indicators of soil nutrient availability than new foliage.
    Schreeg LA; Santiago LS; Wright SJ; Turner BL
    Ecology; 2014 Aug; 95(8):2062-8. PubMed ID: 25230458
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Xylem adjusts to maintain efficiency across a steep precipitation gradient in two coexisting generalist species.
    García-Cervigón AI; Olano JM; von Arx G; Fajardo A
    Ann Bot; 2018 Aug; 122(3):461-472. PubMed ID: 29800073
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Ecology of Australia: the effects of nutrient-poor soils and intense fires.
    Orians GH; Milewski AV
    Biol Rev Camb Philos Soc; 2007 Aug; 82(3):393-423. PubMed ID: 17624961
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Plant species differ in early seedling growth and tissue nutrient responses to arbuscular and ectomycorrhizal fungi.
    Holste EK; Kobe RK; Gehring CA
    Mycorrhiza; 2017 Apr; 27(3):211-223. PubMed ID: 27838856
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Pollen adaptation to ant pollination: a case study from the Proteaceae.
    Delnevo N; van Etten EJ; Clemente N; Fogu L; Pavarani E; Byrne M; Stock WD
    Ann Bot; 2020 Aug; 126(3):377-386. PubMed ID: 32227077
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Plant responses to climate in the Cape Floristic Region of South Africa: evidence for adaptive differentiation in the Proteaceae.
    Carlson JE; Holsinger KE; Prunier R
    Evolution; 2011 Jan; 65(1):108-24. PubMed ID: 20840595
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.