These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 31332586)
1. Magnetic field assisted laser fabrication and electrical characterizations of metal dry Biolectrode with surface microstructures. Zhou W; Zhang C; Liu Y; Li Y; Jiang L; Ren L; Chu X Biomed Microdevices; 2019 Jul; 21(3):74. PubMed ID: 31332586 [TBL] [Abstract][Full Text] [Related]
2. Dry Epidermal Electrodes Can Provide Long-Term High Fidelity Electromyography for Limited Dynamic Lower Limb Movements. Li J; Wang P; Huang HJ Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32867264 [TBL] [Abstract][Full Text] [Related]
3. Comparison of Dry and Wet Electrodes for Detecting Gastrointestinal Activity Patterns from Body Surface Electrical Recordings. Erickson JC; Stepanyan E; Hassid E Ann Biomed Eng; 2023 Jun; 51(6):1310-1321. PubMed ID: 36656453 [TBL] [Abstract][Full Text] [Related]
4. Dry Electrodes for Surface Electromyography Based on Architectured Titanium Thin Films. S Rodrigues M; Fiedler P; Küchler N; P Domingues R; Lopes C; Borges J; Haueisen J; Vaz F Materials (Basel); 2020 May; 13(9):. PubMed ID: 32380683 [TBL] [Abstract][Full Text] [Related]
5. Power line interference filtering on surface electromyography based on the stationary wavelet packet transform. Galiana-Merino JJ; Ruiz-Fernandez D; Martinez-Espla JJ Comput Methods Programs Biomed; 2013 Aug; 111(2):338-46. PubMed ID: 23726363 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of Textile-Based Dry Electrode and Analysis of Its Surface EMG Signal for Applying Smart Wear. Kim H; Rho S; Han S; Lim D; Jeong W Polymers (Basel); 2022 Sep; 14(17):. PubMed ID: 36080714 [TBL] [Abstract][Full Text] [Related]
7. Flexible and water-stable graphene-based electrodes for long-term use in bioelectronics. Murastov G; Bogatova E; Brazovskiy K; Amin I; Lipovka A; Dogadina E; Cherepnyov A; Ananyeva A; Plotnikov E; Ryabov V; Rodriguez RD; Sheremet E Biosens Bioelectron; 2020 Oct; 166():112426. PubMed ID: 32750676 [TBL] [Abstract][Full Text] [Related]
8. Investigation into the origin of the noise of surface electrodes. Huigen E; Peper A; Grimbergen CA Med Biol Eng Comput; 2002 May; 40(3):332-8. PubMed ID: 12195981 [TBL] [Abstract][Full Text] [Related]
9. Nanofiber web textile dry electrodes for long-term biopotential recording. Oh TI; Yoon S; Kim TE; Wi H; Kim KJ; Woo EJ; Sadleir RJ IEEE Trans Biomed Circuits Syst; 2013 Apr; 7(2):204-11. PubMed ID: 23853303 [TBL] [Abstract][Full Text] [Related]
10. A novel signal processing method using system identification for underwater surface electromyography. Uehara S; Muraoka Y; Tanabe S; Ota T; Kimura A Electromyogr Clin Neurophysiol; 2009; 49(2-3):103-8. PubMed ID: 19400405 [TBL] [Abstract][Full Text] [Related]
11. A novel approach for removing ECG interferences from surface EMG signals using a combined ANFIS and wavelet. Abbaspour S; Fallah A; Lindén M; Gholamhosseini H J Electromyogr Kinesiol; 2016 Feb; 26():52-9. PubMed ID: 26643795 [TBL] [Abstract][Full Text] [Related]
12. [Research on ECG de-noising method based on ensemble empirical mode decomposition and wavelet transform using improved threshold function]. Ye L; Yang D; Wang X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Jun; 31(3):567-71. PubMed ID: 25219236 [TBL] [Abstract][Full Text] [Related]
13. ECG Artifact Removal from Surface EMG Signal Using an Automated Method Based on Wavelet-ICA. Abbaspour S; Lindén M; Gholamhosseini H Stud Health Technol Inform; 2015; 211():91-7. PubMed ID: 25980853 [TBL] [Abstract][Full Text] [Related]
14. Quantitative Muscle Fatigue Estimation with High SNR Flexible Skin Electrode. Yun I; Jeung J; Chung Y Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4134-4137. PubMed ID: 33018908 [TBL] [Abstract][Full Text] [Related]
15. A novel approach for automatic visualization and activation detection of evoked potentials induced by epidural spinal cord stimulation in individuals with spinal cord injury. Mesbah S; Angeli CA; Keynton RS; El-Baz A; Harkema SJ PLoS One; 2017; 12(10):e0185582. PubMed ID: 29020054 [TBL] [Abstract][Full Text] [Related]
16. Fructus Xanthii-Inspired Low Dynamic Noise Dry Bioelectrodes for Surface Monitoring of ECG. Niu X; Wang L; Li H; Wang T; Liu H; He Y ACS Appl Mater Interfaces; 2022 Feb; 14(4):6028-6038. PubMed ID: 35044157 [TBL] [Abstract][Full Text] [Related]
17. Adaptive wavelet Wiener filtering of ECG signals. Smital L; Vítek M; Kozumplík J; Provazník I IEEE Trans Biomed Eng; 2013 Feb; 60(2):437-45. PubMed ID: 23192472 [TBL] [Abstract][Full Text] [Related]
18. Noise of surface bio-potential electrodes based on NASICON ceramic and Ag-AgCl. Gondran C; Siebert E; Yacoub S; Novakov E Med Biol Eng Comput; 1996 Nov; 34(6):460-6. PubMed ID: 9039749 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of Flexible Microneedle Array Electrodes for Wearable Bio-Signal Recording. Ren L; Xu S; Gao J; Lin Z; Chen Z; Liu B; Liang L; Jiang L Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29652835 [TBL] [Abstract][Full Text] [Related]
20. Development and testing of acoustically-matched hydrogel-based electrodes for simultaneous EMG-ultrasound detection. Botter A; Beltrandi M; Cerone GL; Gazzoni M; Vieira TMM Med Eng Phys; 2019 Feb; 64():74-79. PubMed ID: 30554980 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]