These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31332750)

  • 1. Site-Specific Modification of Proteins via Trypsiligase.
    Liebscher S; Bordusa F
    Methods Mol Biol; 2019; 2033():95-115. PubMed ID: 31332750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trypsiligase-Catalyzed Peptide and Protein Ligation.
    Liebscher S; Bordusa F
    Methods Mol Biol; 2019; 2012():111-133. PubMed ID: 31161506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-terminal protein modification by substrate-activated reverse proteolysis.
    Liebscher S; Schöpfel M; Aumüller T; Sharkhuukhen A; Pech A; Höss E; Parthier C; Jahreis G; Stubbs MT; Bordusa F
    Angew Chem Int Ed Engl; 2014 Mar; 53(11):3024-8. PubMed ID: 24520050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Derivatization of antibody Fab fragments: a designer enzyme for native protein modification.
    Liebscher S; Kornberger P; Fink G; Trost-Gross EM; Höss E; Skerra A; Bordusa F
    Chembiochem; 2014 May; 15(8):1096-100. PubMed ID: 24782039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineered peptide ligases for cell signaling and bioconjugation.
    Frazier CL; Weeks AM
    Biochem Soc Trans; 2020 Jun; 48(3):1153-1165. PubMed ID: 32539119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Butelase 1-Mediated Ligation of Peptides and Proteins.
    Hemu X; Zhang X; Bi X; Liu CF; Tam JP
    Methods Mol Biol; 2019; 2012():83-109. PubMed ID: 31161505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Challenges in the use of sortase and other peptide ligases for site-specific protein modification.
    Morgan HE; Turnbull WB; Webb ME
    Chem Soc Rev; 2022 May; 51(10):4121-4145. PubMed ID: 35510539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering protein theranostics using bio-orthogonal asparaginyl peptide ligases.
    Wang Z; Zhang D; Hemu X; Hu S; To J; Zhang X; Lescar J; Tam JP; Liu CF
    Theranostics; 2021; 11(12):5863-5875. PubMed ID: 33897886
    [No Abstract]   [Full Text] [Related]  

  • 9. Trypsiligase-Catalyzed Labeling of Proteins on Living Cells.
    Liebscher S; Mathea S; Aumüller T; Pech A; Bordusa F
    Chembiochem; 2021 Apr; 22(7):1201-1204. PubMed ID: 33174659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Asparaginyl-Ligase-Catalyzed Transpeptidation via Selective Nucleophile Quenching.
    Rehm FBH; Tyler TJ; Yap K; Durek T; Craik DJ
    Angew Chem Int Ed Engl; 2021 Feb; 60(8):4004-4008. PubMed ID: 33202079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide bond formation mediated by substrate mimetics. Structure-guidedoptimization of trypsin for synthesis.
    Grünberg R; Domgall I; Günther R; Rall K; Hofmann HJ; Bordusa F
    Eur J Biochem; 2000 Dec; 267(24):7024-30. PubMed ID: 11106412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering the oxyanion hole of trypsin for promoting the reverse of proteolysis.
    Franke L; Liebscher S; Bordusa F
    J Pept Sci; 2014 Feb; 20(2):128-36. PubMed ID: 24357225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipoic Acid Ligase-Promoted Bioorthogonal Protein Modification and Immobilization.
    Plaks JG; Kaar JL
    Methods Mol Biol; 2019; 2012():279-297. PubMed ID: 31161513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-Specific N-Terminal Labeling of Peptides and Proteins using Butelase 1 and Thiodepsipeptide.
    Nguyen GK; Cao Y; Wang W; Liu CF; Tam JP
    Angew Chem Int Ed Engl; 2015 Dec; 54(52):15694-8. PubMed ID: 26563575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Introduction of Bifunctionality into the Multidomain Architecture of the ω-Ester-Containing Peptide Plesiocin.
    Lee C; Lee H; Park JU; Kim S
    Biochemistry; 2020 Jan; 59(3):285-289. PubMed ID: 31644266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic coupling of specific peptides at nonspecific ligation sites: effect of Asp189Glu mutation in trypsin on substrate mimetic-mediated reactions.
    Xu S; Rall K; Bordusa F
    J Org Chem; 2001 Mar; 66(5):1627-32. PubMed ID: 11262106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Introducing bioorthogonal functionalities into proteins in living cells.
    Hao Z; Hong S; Chen X; Chen PR
    Acc Chem Res; 2011 Sep; 44(9):742-51. PubMed ID: 21634380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of Enzymatic Stability and Catalytic Efficiency of Recombinant
    Yang N; Ling Z; Peng L; Liu Y; Liu P; Zhang K; Aman ; Shi J; Li X
    J Microbiol Biotechnol; 2018 Sep; 28(9):1482-1492. PubMed ID: 30369113
    [No Abstract]   [Full Text] [Related]  

  • 19. Engineering the primary substrate specificity of Streptomyces griseus trypsin.
    Page MJ; Wong SL; Hewitt J; Strynadka NC; MacGillivray RT
    Biochemistry; 2003 Aug; 42(30):9060-6. PubMed ID: 12885239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activating a zymogen without proteolytic processing: mutation of Lys15 and Asn194 activates trypsinogen.
    Pasternak A; Liu X; Lin TY; Hedstrom L
    Biochemistry; 1998 Nov; 37(46):16201-10. PubMed ID: 9819212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.