BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31332754)

  • 21. Development of an effective protein-labeling system based on smart fluorogenic probes.
    Reja SI; Minoshima M; Hori Y; Kikuchi K
    J Biol Inorg Chem; 2019 Jun; 24(4):443-455. PubMed ID: 31152238
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New fluorescent substrates of microbial transglutaminase and its application to peptide tag-directed covalent protein labeling.
    Kamiya N; Abe H
    Methods Mol Biol; 2011; 751():81-94. PubMed ID: 21674327
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proximity-Induced Covalent Labeling of Proteins with a Reactive Fluorophore-Binding Peptide Tag.
    Sunbul M; Nacheva L; Jäschke A
    Bioconjug Chem; 2015 Aug; 26(8):1466-9. PubMed ID: 26086394
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A noncanonical amino acid-based relay system for site-specific protein labeling.
    Chen Y; Loredo A; Gordon A; Tang J; Yu C; Ordonez J; Xiao H
    Chem Commun (Camb); 2018 Jun; 54(52):7187-7190. PubMed ID: 29896591
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective two-step labeling of proteins with an off/on fluorescent probe.
    Hirabayashi K; Hanaoka K; Shimonishi M; Terai T; Komatsu T; Ueno T; Nagano T
    Chemistry; 2011 Dec; 17(52):14763-71. PubMed ID: 22106092
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluorescent Labeling of Proteins of Interest in Live Cells: Beyond Fluorescent Proteins.
    Liu J; Cui Z
    Bioconjug Chem; 2020 Jun; 31(6):1587-1595. PubMed ID: 32379972
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How to obtain labeled proteins and what to do with them.
    Hinner MJ; Johnsson K
    Curr Opin Biotechnol; 2010 Dec; 21(6):766-76. PubMed ID: 21030243
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of crosslink-type tag-probe pairs for fluorescent imaging of proteins.
    Nomura W; Mino T; Narumi T; Ohashi N; Masuda A; Hashimoto C; Tsutsumi H; Tamamura H
    Biopolymers; 2010; 94(6):843-52. PubMed ID: 20564030
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of a Small Probe That Can Be Conjugated to Proteins by Proximity Labeling.
    Sun W; Huo Y; Mei Y; Zhou Q; Zhao S; Zhuang M
    ACS Chem Biol; 2020 Jan; 15(1):39-43. PubMed ID: 31851491
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Site-specific dual labeling of proteins by using small orthogonal tags at neutral pH.
    Grünewald J; Jones DH; Brock A; Chiu HP; Bursulaya B; Ng K; Vo T; Patterson P; Uno T; Hunt J; Spraggon G; Geierstanger BH
    Chembiochem; 2014 Aug; 15(12):1787-91. PubMed ID: 25044133
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The carboxy-terminal peptide of detyrosinated alpha tubulin provides a minimal system to study the substrate specificity of tubulin-tyrosine ligase.
    Rüdiger M; Wehland J; Weber K
    Eur J Biochem; 1994 Mar; 220(2):309-20. PubMed ID: 7510228
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Incorporation of nitrotyrosine into alpha-tubulin by recombinant mammalian tubulin-tyrosine ligase.
    Kalisz HM; Erck C; Plessmann U; Wehland J
    Biochim Biophys Acta; 2000 Aug; 1481(1):131-8. PubMed ID: 11004583
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two-step protein labeling by using lipoic acid ligase with norbornene substrates and subsequent inverse-electron demand Diels-Alder reaction.
    Best M; Degen A; Baalmann M; Schmidt TT; Wombacher R
    Chembiochem; 2015 May; 16(8):1158-62. PubMed ID: 25900689
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein Labeling and Bioconjugation Using N-Myristoyltransferase.
    Ejendal KFK; Fraseur JG; Kinzer-Ursem TL
    Methods Mol Biol; 2019; 2033():149-165. PubMed ID: 31332753
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Normalized Quantitative Western Blotting Based on Standardized Fluorescent Labeling.
    Faden F; Eschen-Lippold L; Dissmeyer N
    Methods Mol Biol; 2016; 1450():247-58. PubMed ID: 27424760
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Visualization and Functional Regulation of Live Cell Proteins Based on Labeling Probe Design].
    Mizukami S; Kikuchi K
    Yakugaku Zasshi; 2016; 136(1):21-7. PubMed ID: 26725663
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enzyme-based protein-tagging systems for site-specific labeling of proteins in living cells.
    Sueda S
    Microscopy (Oxf); 2020 May; 69(3):156-166. PubMed ID: 32166307
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MiniVIPER Is a Peptide Tag for Imaging and Translocating Proteins in Cells.
    Doh JK; Tobin SJ; Beatty KE
    Biochemistry; 2020 Aug; 59(33):3051-3059. PubMed ID: 32786411
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient and Selective Chemical Labeling of Electrochemically Generated Peptides Based on Spirolactone Chemistry.
    Zhang T; Niu X; Yuan T; Tessari M; de Vries MP; Permentier HP; Bischoff R
    Anal Chem; 2016 Jun; 88(12):6465-71. PubMed ID: 27247048
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strategies for Site-Specific Labeling of Receptor Proteins on the Surfaces of Living Cells by Using Genetically Encoded Peptide Tags.
    Wolf P; Gavins G; Beck-Sickinger AG; Seitz O
    Chembiochem; 2021 May; 22(10):1717-1732. PubMed ID: 33428317
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.