BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 31332913)

  • 1. Enhanced Raman Scattering by ZnO Superstructures: Synergistic Effect of Charge Transfer and Mie Resonances.
    Ji W; Li L; Song W; Wang X; Zhao B; Ozaki Y
    Angew Chem Int Ed Engl; 2019 Oct; 58(41):14452-14456. PubMed ID: 31332913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Plasmon Resonance from Gallium-Doped Zinc Oxide Nanoparticles and Their Electromagnetic Enhancement Contribution to Surface-Enhanced Raman Scattering.
    Wang Y; Zhang M; Ma H; Su H; Li A; Ruan W; Zhao B
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):35038-35045. PubMed ID: 34279091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro-nano zinc oxide film fabricated by biomimetic mineralization: Designed architectures for SERS substrates.
    Lu F; Guo Y; Wang Y; Song W; Zhao B
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 197():83-87. PubMed ID: 29395930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remarkable SERS Activity Observed from Amorphous ZnO Nanocages.
    Wang X; Shi W; Jin Z; Huang W; Lin J; Ma G; Li S; Guo L
    Angew Chem Int Ed Engl; 2017 Aug; 56(33):9851-9855. PubMed ID: 28651039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An enhanced degree of charge transfer in dye-sensitized solar cells with a ZnO-TiO
    Wang X; Li P; Han XX; Kitahama Y; Zhao B; Ozaki Y
    Nanoscale; 2017 Oct; 9(40):15303-15313. PubMed ID: 28805870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the Charge-Transfer Between Ga-Doped ZnO Nanoparticles and Molecules Using Surface-Enhanced Raman Scattering: Doping Induced Band-Gap Shrinkage.
    Li P; Wang X; Zhang X; Zhang L; Yang X; Zhao B
    Front Chem; 2019; 7():144. PubMed ID: 30941346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Ultra-Sensitive Semiconductor SERS Substrate Boosted by the Coupled Resonance Effect.
    Yang L; Peng Y; Yang Y; Liu J; Huang H; Yu B; Zhao J; Lu Y; Huang Z; Li Z; Lombardi JR
    Adv Sci (Weinh); 2019 Jun; 6(12):1900310. PubMed ID: 31380169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low temperature-boosted high efficiency photo-induced charge transfer for remarkable SERS activity of ZnO nanosheets.
    Lin J; Yu J; Akakuru OU; Wang X; Yuan B; Chen T; Guo L; Wu A
    Chem Sci; 2020 Aug; 11(35):9414-9420. PubMed ID: 34094207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of Chemical Enhancement Mechanism in Non-plasmonic Surface Enhanced Raman Spectroscopy (SERS).
    Kim J; Jang Y; Kim NJ; Kim H; Yi GC; Shin Y; Kim MH; Yoon S
    Front Chem; 2019; 7():582. PubMed ID: 31482089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maximizing the electromagnetic and chemical resonances of surface-enhanced Raman scattering for nucleic acids.
    Freeman LM; Pang L; Fainman Y
    ACS Nano; 2014 Aug; 8(8):8383-91. PubMed ID: 25065837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Observation of Enhanced Raman Scattering on Nano-Sized ZrO
    Ji P; Wang Z; Shang X; Zhang Y; Liu Y; Mao Z; Shi X
    Front Chem; 2019; 7():245. PubMed ID: 31058134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman scattering enhancement of a single ZnO nanorod decorated with Ag nanoparticles: synergies of defects and plasmons.
    Lin R; Hu L; Wang J; Zhang W; Ruan S; Zeng YJ
    Opt Lett; 2018 May; 43(10):2244-2247. PubMed ID: 29762563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Au-ZnO hybrid nanoparticles exhibiting strong charge-transfer-induced SERS for recyclable SERS-active substrates.
    Liu L; Yang H; Ren X; Tang J; Li Y; Zhang X; Cheng Z
    Nanoscale; 2015 Mar; 7(12):5147-51. PubMed ID: 25721784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The theory of surface-enhanced Raman scattering on semiconductor nanoparticles; toward the optimization of SERS sensors.
    Lombardi JR
    Faraday Discuss; 2017 Dec; 205():105-120. PubMed ID: 28885632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2D GaN for Highly Reproducible Surface Enhanced Raman Scattering.
    Zhao S; Wang H; Niu L; Xiong W; Chen Y; Zeng M; Yuan S; Fu L
    Small; 2021 Nov; 17(45):e2103442. PubMed ID: 34569140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation on the second part of the electromagnetic SERS enhancement and resulting fabrication strategies of anisotropic plasmonic arrays.
    Cialla D; Petschulat J; Hübner U; Schneidewind H; Zeisberger M; Mattheis R; Pertsch T; Schmitt M; Möller R; Popp J
    Chemphyschem; 2010 Jun; 11(9):1918-24. PubMed ID: 20401896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-semiconductor heterostructures for surface-enhanced Raman scattering: synergistic contribution of plasmons and charge transfer.
    Liu Y; Ma H; Han XX; Zhao B
    Mater Horiz; 2021 Feb; 8(2):370-382. PubMed ID: 34821260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-Nanostructured Single Silver Nanowire: A New One-Dimensional Microscale Surface-Enhanced Raman Scattering Interface.
    Chen M; Zhang H; Ge Y; Yang S; Wang P; Fang Y
    Langmuir; 2018 Dec; 34(50):15160-15165. PubMed ID: 30485107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charge transfer enhancement in the SERS of a single molecule.
    Park WH; Kim ZH
    Nano Lett; 2010 Oct; 10(10):4040-8. PubMed ID: 20857978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Band Structure Engineering within Two-Dimensional Borocarbonitride Nanosheets for Surface-Enhanced Raman Scattering.
    Liang C; Lu ZA; Zheng M; Chen M; Zhang Y; Zhang B; Zhang J; Xu P
    Nano Lett; 2022 Aug; 22(16):6590-6598. PubMed ID: 35969868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.