These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31332956)

  • 21. Recycling of CO
    Kim J; Pfänder N; Prieto G
    ChemSusChem; 2020 Apr; 13(8):2043-2052. PubMed ID: 32061179
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selective hydrogenation of lactic acid to 1,2-propanediol over highly active ruthenium-molybdenum oxide catalysts.
    Takeda Y; Shoji T; Watanabe H; Tamura M; Nakagawa Y; Okumura K; Tomishige K
    ChemSusChem; 2015 Apr; 8(7):1170-8. PubMed ID: 25510671
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rational Control of the Selectivity of a Ruthenium Catalyst for Hydrogenation of 4-Nitrostyrene by Strain Regulation.
    Mao J; Chen W; Sun W; Chen Z; Pei J; He D; Lv C; Wang D; Li Y
    Angew Chem Int Ed Engl; 2017 Sep; 56(39):11971-11975. PubMed ID: 28710802
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly selective hydrogenation of arenes using nanostructured ruthenium catalysts modified with a carbon-nitrogen matrix.
    Cui X; Surkus AE; Junge K; Topf C; Radnik J; Kreyenschulte C; Beller M
    Nat Commun; 2016 Apr; 7():11326. PubMed ID: 27113087
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An efficient N-heterocyclic carbene-ruthenium complex: application towards the synthesis of polyesters and polyamides.
    Malineni J; Keul H; Möller M
    Macromol Rapid Commun; 2015 Mar; 36(6):547-52. PubMed ID: 25653190
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controlling the surface environment of heterogeneous catalysts using self-assembled monolayers.
    Schoenbaum CA; Schwartz DK; Medlin JW
    Acc Chem Res; 2014 Apr; 47(4):1438-45. PubMed ID: 24635215
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct Ruthenium-Catalyzed Hydrogenation of Carboxylic Acids to Alcohols.
    Cui X; Li Y; Topf C; Junge K; Beller M
    Angew Chem Int Ed Engl; 2015 Sep; 54(36):10596-9. PubMed ID: 26190772
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Renewable Polyethers via GaBr
    Dannecker PK; Biermann U; von Czapiewski M; Metzger JO; Meier MAR
    Angew Chem Int Ed Engl; 2018 Jul; 57(28):8775-8779. PubMed ID: 29722106
    [TBL] [Abstract][Full Text] [Related]  

  • 29. One-pot synthesis of sorbitol via hydrolysis-hydrogenation of cellulose in the presence of Ru-containing composites.
    Gromov NV; Medvedeva TB; Rodikova YA; Timofeeva MN; Panchenko VN; Taran OP; Kozhevnikov IV; Parmon VN
    Bioresour Technol; 2021 Jan; 319():124122. PubMed ID: 32971329
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tandem Ru-alkylidene-catalysed cross metathesis/hydrogenation: synthesis of lipophilic amino acids.
    Wang ZJ; Spiccia ND; Jackson WR; Robinson AJ
    J Pept Sci; 2013 Aug; 19(8):470-6. PubMed ID: 23733491
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ruthenium-Catalyzed Synthesis of Dialkoxymethane Ethers Utilizing Carbon Dioxide and Molecular Hydrogen.
    Thenert K; Beydoun K; Wiesenthal J; Leitner W; Klankermayer J
    Angew Chem Int Ed Engl; 2016 Sep; 55(40):12266-9. PubMed ID: 27581330
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective homogeneous hydrogenation of biogenic carboxylic acids with [Ru(TriPhos)H]+: a mechanistic study.
    Geilen FM; Engendahl B; Hölscher M; Klankermayer J; Leitner W
    J Am Chem Soc; 2011 Sep; 133(36):14349-58. PubMed ID: 21786816
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular catalyst systems as key enablers for tailored polyesters and polycarbonate recycling concepts.
    Westhues S; Idel J; Klankermayer J
    Sci Adv; 2018 Aug; 4(8):eaat9669. PubMed ID: 30105308
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A continuous flow strategy for the coupled transfer hydrogenation and etherification of 5-(hydroxymethyl)furfural using Lewis acid zeolites.
    Lewis JD; Van de Vyver S; Crisci AJ; Gunther WR; Michaelis VK; Griffin RG; Román-Leshkov Y
    ChemSusChem; 2014 Aug; 7(8):2255-65. PubMed ID: 25045144
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrogenation of p-chloronitrobenzene over nanostructured-carbon-supported ruthenium catalysts.
    Oubenali M; Vanucci G; Machado B; Kacimi M; Ziyad M; Faria J; Raspolli-Galetti A; Serp P
    ChemSusChem; 2011 Jul; 4(7):950-6. PubMed ID: 21656695
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent advances in vegetable oil-based polyurethanes.
    Pfister DP; Xia Y; Larock RC
    ChemSusChem; 2011 Jun; 4(6):703-17. PubMed ID: 21598405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanistic Insights into Ruthenium-Pincer-Catalyzed Amine-Assisted Homogeneous Hydrogenation of CO
    Kar S; Sen R; Kothandaraman J; Goeppert A; Chowdhury R; Munoz SB; Haiges R; Prakash GKS
    J Am Chem Soc; 2019 Feb; 141(7):3160-3170. PubMed ID: 30753062
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A rare earth hydride supported ruthenium catalyst for the hydrogenation of
    Wu Y; Yu H; Guo Y; Jiang X; Qi Y; Sun B; Li H; Zheng J; Li X
    Chem Sci; 2019 Dec; 10(45):10459-10465. PubMed ID: 32190238
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electronic Effect in a Ruthenium Catalyst Designed in Nanoporous N-Functionalized Carbon for Efficient Hydrogenation of Heteroarenes.
    Chandra D; Saini S; Bhattacharya S; Bhaumik A; Kamata K; Hara M
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52668-52677. PubMed ID: 33185087
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biphasic catalytic conversion of fructose by continuous hydrogenation of HMF over a hydrophobic ruthenium catalyst.
    Yang Y; Du Z; Ma J; Lu F; Zhang J; Xu J
    ChemSusChem; 2014 May; 7(5):1352-6. PubMed ID: 24644062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.