These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 31333016)

  • 1. Printing of Hydrophobic Materials in Fumed Silica Nanoparticle Suspension.
    Jin Y; Song K; Gellermann N; Huang Y
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):29207-29217. PubMed ID: 31333016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional Nanoclay Suspension for Printing-Then-Solidification of Liquid Materials.
    Jin Y; Compaan A; Chai W; Huang Y
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):20057-20066. PubMed ID: 28534614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Printing PDMS Elastomer in a Hydrophilic Support Bath via Freeform Reversible Embedding.
    Hinton TJ; Hudson A; Pusch K; Lee A; Feinberg AW
    ACS Biomater Sci Eng; 2016 Oct; 2(10):1781-1786. PubMed ID: 27747289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of Filament Defects in Embedded 3D Printing.
    Friedrich LM; Gunther RT; Seppala JE
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32561-32578. PubMed ID: 35786823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freeform Liquid 3D Printing of Soft Functional Components for Soft Robotics.
    Calais T; Sanandiya ND; Jain S; Kanhere EV; Kumar S; Yeow RC; Valdivia Y Alvarado P
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):2301-2315. PubMed ID: 34962370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Dimensional-Printed Silica Aerogels for Thermal Insulation by Directly Writing Temperature-Induced Solidifiable Inks.
    Wang L; Feng J; Luo Y; Zhou Z; Jiang Y; Luo X; Xu L; Li L; Feng J
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40964-40975. PubMed ID: 34424660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A pickering emulsion stabilized by chlorella microalgae as an eco-friendly extrusion-based 3D printing ink processable under ambient conditions.
    Kwak C; Young Ryu S; Park H; Lim S; Yang J; Kim J; Hyung Kim J; Lee J
    J Colloid Interface Sci; 2021 Jan; 582(Pt A):81-89. PubMed ID: 32814225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gellan Fluid Gel as a Versatile Support Bath Material for Fluid Extrusion Bioprinting.
    Compaan AM; Song K; Huang Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5714-5726. PubMed ID: 30644714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printing by Multiphase Silicone/Water Capillary Inks.
    Roh S; Parekh DP; Bharti B; Stoyanov SD; Velev OD
    Adv Mater; 2017 Aug; 29(30):. PubMed ID: 28590510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional printing of freeform helical microstructures: a review.
    Farahani RD; Chizari K; Therriault D
    Nanoscale; 2014 Sep; 6(18):10470-85. PubMed ID: 25072812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-Operando Study of Shape Retention and Microstructure Development in a Hydrolyzing Sol-Gel Ink during 3D-Printing.
    Torres Arango MA; Zhang Y; Li R; Doerk G; Fluerasu A; Wiegart L
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):51044-51056. PubMed ID: 33138355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Printability study of hydrogel solution extrusion in nanoclay yield-stress bath during printing-then-gelation biofabrication.
    Jin Y; Chai W; Huang Y
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():313-325. PubMed ID: 28866170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile Photo and Thermal Two-Stage Curing for High-Performance 3D Printing of Poly(Dimethylsiloxane).
    Ji Z; Jiang D; Zhang X; Guo Y; Wang X
    Macromol Rapid Commun; 2020 May; 41(10):e2000064. PubMed ID: 32307760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional Printing of Silver Microarchitectures Using Newtonian Nanoparticle Inks.
    Lee S; Kim JH; Wajahat M; Jeong H; Chang WS; Cho SH; Kim JT; Seol SK
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18918-18924. PubMed ID: 28541035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Granular gel support-enabled extrusion of three-dimensional alginate and cellular structures.
    Jin Y; Compaan A; Bhattacharjee T; Huang Y
    Biofabrication; 2016 Jun; 8(2):025016. PubMed ID: 27257095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonplanar 3D Printing of Epoxy Using Freeform Reversible Embedding.
    Arun ND; Yang H; Yao L; Feinberg AW
    Adv Mater Technol; 2023 Apr; 8(7):. PubMed ID: 37732106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluid Bath-Assisted 3D Printing for Biomedical Applications: From Pre- to Postprinting Stages.
    Hua W; Mitchell K; Raymond L; Godina B; Zhao D; Zhou W; Jin Y
    ACS Biomater Sci Eng; 2021 Oct; 7(10):4736-4756. PubMed ID: 34582176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices.
    Ozbolat V; Dey M; Ayan B; Ozbolat IT
    Biofabrication; 2019 Apr; 11(3):034101. PubMed ID: 30884470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploitation of Cationic Silica Nanoparticles for Bioprinting of Large-Scale Constructs with High Printing Fidelity.
    Lee M; Bae K; Guillon P; Chang J; Arlov Ø; Zenobi-Wong M
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):37820-37828. PubMed ID: 30360117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Embedded 3D Printing of Thermally-Cured Thermoset Elastomers and the Interdependence of Rheology and Machine Pathing.
    Stang M; Tashman J; Shiwarski D; Yang H; Yao L; Feinberg A
    Adv Mater Technol; 2023 Feb; 8(3):. PubMed ID: 36817013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.