These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 31333076)
1. Design, quality and quality assurance of solid recovered fuels for the substitution of fossil feedstock in the cement industry - Update 2019. Sarc R; Seidler IM; Kandlbauer L; Lorber KE; Pomberger R Waste Manag Res; 2019 Sep; 37(9):885-897. PubMed ID: 31333076 [TBL] [Abstract][Full Text] [Related]
2. Design, quality, and quality assurance of solid recovered fuels for the substitution of fossil feedstock in the cement industry. Sarc R; Lorber KE; Pomberger R; Rogetzer M; Sipple EM Waste Manag Res; 2014 Jul; 32(7):565-85. PubMed ID: 24942836 [TBL] [Abstract][Full Text] [Related]
3. Design and quality assurance for solid recovered fuel. Lorber KE; Sarc R; Aldrian A Waste Manag Res; 2012 Apr; 30(4):370-80. PubMed ID: 22504629 [TBL] [Abstract][Full Text] [Related]
4. Quality standards and requirements for solid recovered fuels: a review. Flamme S; Geiping J Waste Manag Res; 2012 Apr; 30(4):335-53. PubMed ID: 22446971 [TBL] [Abstract][Full Text] [Related]
5. Solid recovered fuels in the cement industry with special respect to hazardous waste. Thomanetz E Waste Manag Res; 2012 Apr; 30(4):404-12. PubMed ID: 22573713 [TBL] [Abstract][Full Text] [Related]
6. Criteria for solid recovered fuels as a substitute for fossil fuels--a review. Beckmann M; Pohl M; Bernhardt D; Gebauer K Waste Manag Res; 2012 Apr; 30(4):354-69. PubMed ID: 22467662 [TBL] [Abstract][Full Text] [Related]
7. Solid recovered fuels in the cement industry--semi-automated sample preparation unit as a means for facilitated practical application. Aldrian A; Sarc R; Pomberger R; Lorber KE; Sipple EM Waste Manag Res; 2016 Mar; 34(3):254-64. PubMed ID: 26759433 [TBL] [Abstract][Full Text] [Related]
8. New techniques for the characterization of refuse-derived fuels and solid recovered fuels. Rotter VS; Lehmann A; Marzi T; Möhle E; Schingnitz D; Hoffmann G Waste Manag Res; 2011 Feb; 29(2):229-36. PubMed ID: 20392788 [TBL] [Abstract][Full Text] [Related]
9. Production, quality and quality assurance of Refuse Derived Fuels (RDFs). Sarc R; Lorber KE Waste Manag; 2013 Sep; 33(9):1825-34. PubMed ID: 23746983 [TBL] [Abstract][Full Text] [Related]
10. Impact of utilizing solid recovered fuel on the global warming potential of cement production and waste management system: A life cycle assessment approach. Khan MMH; Havukainen J; Horttanainen M Waste Manag Res; 2021 Apr; 39(4):561-572. PubMed ID: 33357123 [TBL] [Abstract][Full Text] [Related]
11. Energy and environmental assessment of solid recovered fuels valorisation: Waste-to-Chemicals options vs co-combustion in cement plants. Conversano A; Sogni D; Lombardelli G; Di Bona D; Viganò F; Consonni S Waste Manag; 2024 Dec; 190():432-442. PubMed ID: 39418862 [TBL] [Abstract][Full Text] [Related]
12. Origins of major and minor ash constituents of solid recovered fuel for co-processing in the cement industry. Viczek SA; Aldrian A; Pomberger R; Sarc R Waste Manag; 2021 May; 126():423-432. PubMed ID: 33836393 [TBL] [Abstract][Full Text] [Related]
13. An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste. Garg A; Smith R; Hill D; Longhurst PJ; Pollard SJ; Simms NJ Waste Manag; 2009 Aug; 29(8):2289-97. PubMed ID: 19443201 [TBL] [Abstract][Full Text] [Related]
14. Wastes as co-fuels: the policy framework for solid recovered fuel (SRF) in Europe, with UK implications. Garg A; Smith R; Hill D; Simms N; Pollard S Environ Sci Technol; 2007 Jul; 41(14):4868-74. PubMed ID: 17711195 [TBL] [Abstract][Full Text] [Related]
15. Current issues on the production and utilization of medium-calorific solid recovered fuel: a case study on SRF for the HOTDISC technology. Pomberger R; Klampfl-Pernold H; Abl C Waste Manag Res; 2012 Apr; 30(4):413-20. PubMed ID: 22452954 [TBL] [Abstract][Full Text] [Related]
16. Co-processing of solid recovered fuels from mixed municipal and commercial waste in the cement industry - A pathway to a circular economy. Sarc R; Viczek SA Waste Manag Res; 2024 Mar; 42(3):260-272. PubMed ID: 37382414 [TBL] [Abstract][Full Text] [Related]
17. Potential of solid recovered fuel production from autoclave treated healthcare waste in Sultanate of Oman. Al-Wahaibi M; Baird J J Air Waste Manag Assoc; 2024 May; 74(5):304-318. PubMed ID: 38359400 [TBL] [Abstract][Full Text] [Related]
18. Characterisation and composition identification of waste-derived fuels obtained from municipal solid waste using thermogravimetry: A review. Gerassimidou S; Velis CA; Williams PT; Komilis D Waste Manag Res; 2020 Sep; 38(9):942-965. PubMed ID: 32705957 [TBL] [Abstract][Full Text] [Related]
19. Optimal utilization of waste-to-energy in an LCA perspective. Fruergaard T; Astrup T Waste Manag; 2011 Mar; 31(3):572-82. PubMed ID: 20937557 [TBL] [Abstract][Full Text] [Related]
20. The strategy for conservation non-renewable natural resources through producing and application solid recovery fuel in the cement industry: a case study for Lithuania. Pitak I; Rinkevičius D; Kalpokaitė-Dičkuvienė R; Baltušnikas A; Denafas G Environ Sci Pollut Res Int; 2022 Oct; 29(46):69618-69634. PubMed ID: 35576030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]