These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 313338)

  • 21. Individual assignments of the methyl resonances in the 1H nuclear magnetic resonance spectrum of the basic pancreatic trypsin inhibitor.
    Wüthrich K; Wagner G; Richarz R; Perkins SJ
    Biochemistry; 1978 Jun; 17(12):2253-63. PubMed ID: 307961
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amide-proton exchange studies by two-dimensional correlated 1H NMR in two chemically modified analogs of the basic pancreatic trypsin inhibitor.
    Wagner G; Stassinopoulou CI; Wüthrich K
    Eur J Biochem; 1984 Dec; 145(2):431-6. PubMed ID: 6209139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Denaturation of free and complexed bovine trypsinogen with the calcium ion, dipeptide Ile-Val and basic pancreatic trypsin inhibitor (Kunitz).
    Bulaj G; Otlewski J
    Eur J Biochem; 1994 Aug; 223(3):939-46. PubMed ID: 7519988
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein unfolding pathways explored through molecular dynamics simulations.
    Daggett V; Levitt M
    J Mol Biol; 1993 Jul; 232(2):600-19. PubMed ID: 7688428
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of the environment in the refolding of reduced pancreatic trypsin inhibitor.
    Creighton TE
    J Mol Biol; 1980 Dec; 144(4):521-50. PubMed ID: 6166751
    [No Abstract]   [Full Text] [Related]  

  • 26. Sequential resonance assignments in protein 1H nuclear magnetic resonance spectra. Basic pancreatic trypsin inhibitor.
    Wagner G; Wüthrich K
    J Mol Biol; 1982 Mar; 155(3):347-66. PubMed ID: 6176717
    [No Abstract]   [Full Text] [Related]  

  • 27. Methanol-stabilized intermediates in the thermal unfolding of ribonuclease A. Characterization by 1H nuclear magnetic resonance.
    Biringer RG; Fink AL
    J Mol Biol; 1982 Sep; 160(1):87-116. PubMed ID: 7175932
    [No Abstract]   [Full Text] [Related]  

  • 28. Disulfide bond-coupled folding of bovine pancreatic trypsin inhibitor derivatives missing one or two disulfide bonds.
    Kosen PA; Marks CB; Falick AM; Anderson S; Kuntz ID
    Biochemistry; 1992 Jun; 31(25):5705-17. PubMed ID: 1377024
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spontaneous re-formation of a broken peptide chain.
    Dyckes DF; Creighton T; Sheppard RC
    Nature; 1974 Jan; 247(5438):202-4. PubMed ID: 4543964
    [No Abstract]   [Full Text] [Related]  

  • 30. Kinetic analysis of the folding and unfolding of a mutant form of bovine pancreatic trypsin inhibitor lacking the cysteine-14 and -38 thiols.
    Goldenberg DP
    Biochemistry; 1988 Apr; 27(7):2481-9. PubMed ID: 2454656
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Implication of the structure and stability of disulfide intermediates of lysozyme on the mechanism of renaturation.
    Acharya AS; Taniuchi H
    Mol Cell Biochem; 1982 May; 44(3):129-48. PubMed ID: 7050652
    [No Abstract]   [Full Text] [Related]  

  • 32. Early events in the disulfide-coupled folding of BPTI.
    Bulaj G; Goldenberg DP
    Protein Sci; 1999 Sep; 8(9):1825-42. PubMed ID: 10493584
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A nuclear magnetic resonance study of bovine pancreatic trypsin inhibitor. Tyrosine titrations and backbone NH groups.
    Karplus S; Snyder GH; Sykes BD
    Biochemistry; 1973 Mar; 12(7):1323-9. PubMed ID: 4735299
    [No Abstract]   [Full Text] [Related]  

  • 34. Role of a subdomain in the folding of bovine pancreatic trypsin inhibitor.
    Staley JP; Kim PS
    Nature; 1990 Apr; 344(6267):685-8. PubMed ID: 1691452
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 1H-n.m.r. studies of the isolated activation segment from pig procarboxypeptidase A.
    Vendrell J; Avilés FX; Vilanova M; Turner CH; Crane-Robinson C
    Biochem J; 1990 Apr; 267(1):213-20. PubMed ID: 2327981
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetic correlations between the disulfide bond reduction and the induced conformational change of proteins.
    Segawa T; Kuwajima K; Sugai S
    Biochim Biophys Acta; 1981 Mar; 668(1):89-97. PubMed ID: 7236711
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural stability of human alpha-thrombin studied by disulfide reduction and scrambling.
    Rajesh Singh R; Chang JY
    Biochim Biophys Acta; 2003 Sep; 1651(1-2):85-92. PubMed ID: 14499592
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rhodanese conformational changes permit oxidation to give disulfides that form in a kinetically determined sequence.
    Horowitz PM; Hua S
    Biochim Biophys Acta; 1995 Jun; 1249(2):161-7. PubMed ID: 7599169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Complete folding of bovine pancreatic trypsin inhibitor with only a single disulfide bond.
    Staley JP; Kim PS
    Proc Natl Acad Sci U S A; 1992 Mar; 89(5):1519-23. PubMed ID: 1371875
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein conformation and proton nuclear-magnetic-resonance chemical shifts.
    Pardi A; Wagner G; Wüthrich K
    Eur J Biochem; 1983 Dec; 137(3):445-54. PubMed ID: 6198174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.