These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 31333911)
1. Bioinformatics analysis of microarray data to identify the candidate biomarkers of lung adenocarcinoma. Guo T; Ma H; Zhou Y PeerJ; 2019; 7():e7313. PubMed ID: 31333911 [TBL] [Abstract][Full Text] [Related]
2. Integrated bioinformatics analysis of microarray data from the GEO database to identify the candidate genes linked to poor prognosis in lung adenocarcinoma. Liu X; Li L; Xie X; Zhuang D; Hu C Technol Health Care; 2023; 31(2):579-592. PubMed ID: 36336945 [TBL] [Abstract][Full Text] [Related]
3. Identification of crucial genes associated with lung adenocarcinoma by bioinformatic analysis. Dai JJ; Zhou WB; Wang B Medicine (Baltimore); 2020 Oct; 99(44):e23052. PubMed ID: 33126397 [TBL] [Abstract][Full Text] [Related]
4. Analysis of genes associated with prognosis of lung adenocarcinoma based on GEO and TCGA databases. Yu Y; Tian X Medicine (Baltimore); 2020 May; 99(19):e20183. PubMed ID: 32384511 [TBL] [Abstract][Full Text] [Related]
5. High Expression of Deng H; Huang Y; Wang L; Chen M Biomed Res Int; 2020; 2020():2071593. PubMed ID: 33134373 [TBL] [Abstract][Full Text] [Related]
6. Identification of key genes and biological pathways in lung adenocarcinoma by integrated bioinformatics analysis. Zhang L; Liu Y; Zhuang JG; Guo J; Li YT; Dong Y; Song G World J Clin Cases; 2023 Aug; 11(23):5504-5518. PubMed ID: 37637684 [TBL] [Abstract][Full Text] [Related]
7. Identification of KIF4A and its effect on the progression of lung adenocarcinoma based on the bioinformatics analysis. Song Y; Tang W; Li H Biosci Rep; 2021 Jan; 41(1):. PubMed ID: 33398330 [TBL] [Abstract][Full Text] [Related]
8. Identification of potential key molecular biomarkers in lung adenocarcinoma by bioinformatics analysis. Guo P; Xu T; Jiang Y; Shen W Transl Cancer Res; 2022 Jan; 11(1):227-241. PubMed ID: 35261899 [TBL] [Abstract][Full Text] [Related]
9. Identification key genes, key miRNAs and key transcription factors of lung adenocarcinoma. Li J; Li Z; Zhao S; Song Y; Si L; Wang X J Thorac Dis; 2020 May; 12(5):1917-1933. PubMed ID: 32642095 [TBL] [Abstract][Full Text] [Related]
10. Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis. Wen P; Chidanguro T; Shi Z; Gu H; Wang N; Wang T; Li Y; Gao J Mol Med Rep; 2018 Aug; 18(2):1538-1550. PubMed ID: 29845250 [TBL] [Abstract][Full Text] [Related]
11. Comprehensive analysis of TPX2-related ceRNA network as prognostic biomarkers in lung adenocarcinoma. Huo C; Zhang MY; Li R; Zhou XJ; Liu TT; Li JP; Liu X; Qu YQ Int J Med Sci; 2020; 17(16):2427-2439. PubMed ID: 33029085 [No Abstract] [Full Text] [Related]
12. Identification of significant genes as prognostic markers and potential tumor suppressors in lung adenocarcinoma via bioinformatical analysis. Lu M; Fan X; Liao W; Li Y; Ma L; Yuan M; Gu R; Wei Z; Wang C; Zhang H BMC Cancer; 2021 May; 21(1):616. PubMed ID: 34039311 [TBL] [Abstract][Full Text] [Related]
13. Identification of Candidate Biomarkers Correlated With the Pathogenesis and Prognosis of Non-small Cell Lung Cancer via Integrated Bioinformatics Analysis. Ni M; Liu X; Wu J; Zhang D; Tian J; Wang T; Liu S; Meng Z; Wang K; Duan X; Zhou W; Zhang X Front Genet; 2018; 9():469. PubMed ID: 30369945 [No Abstract] [Full Text] [Related]
14. Identification of key genes and biological pathways in lung adenocarcinoma via bioinformatics analysis. Wang Y; Zhou Z; Chen L; Li Y; Zhou Z; Chu X Mol Cell Biochem; 2021 Feb; 476(2):931-939. PubMed ID: 33130972 [TBL] [Abstract][Full Text] [Related]
15. Identification of prognostic risk factors for pancreatic cancer using bioinformatics analysis. Jin D; Jiao Y; Ji J; Jiang W; Ni W; Wu Y; Ni R; Lu C; Qu L; Ni H; Liu J; Xu W; Xiao M PeerJ; 2020; 8():e9301. PubMed ID: 32587798 [TBL] [Abstract][Full Text] [Related]
16. Promising novel biomarkers and candidate small-molecule drugs for lung adenocarcinoma: Evidence from bioinformatics analysis of high-throughput data. Li C; Wan Y; Deng W; Fei F; Wang L; Qi F; Zheng Z Open Med (Wars); 2022; 17(1):96-112. PubMed ID: 35028418 [TBL] [Abstract][Full Text] [Related]
17. Estimation of hub genes and exploration of multi-omics level alterations in the landscape of lung adenocarcinoma. Li G; Atiq W; Hashmi MF; Ibrahim SS; Al Abdulsalam KA; Kadham MJ; Al-Azzawi AKJ; Aufy M; Abdel-Maksoud MA Am J Transl Res; 2023; 15(3):1550-1568. PubMed ID: 37056815 [TBL] [Abstract][Full Text] [Related]
18. Identification of genes and pathways in esophageal adenocarcinoma using bioinformatics analysis. He F; Ai B; Tian L Biomed Rep; 2018 Oct; 9(4):305-312. PubMed ID: 30233782 [TBL] [Abstract][Full Text] [Related]
19. Identification of candidate genes associated with the pathogenesis of small cell lung cancer via integrated bioinformatics analysis. Liao Y; Yin G; Wang X; Zhong P; Fan X; Huang C Oncol Lett; 2019 Oct; 18(4):3723-3733. PubMed ID: 31516585 [TBL] [Abstract][Full Text] [Related]
20. Identification of differentially expressed genes associated with lung adenocarcinoma via bioinformatics analysis. Yang X; Feng Q; Jing J; Yan J; Zeng Z; Zheng H; Cheng X Gen Physiol Biophys; 2021 Jan; 40(1):31-48. PubMed ID: 33655889 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]