BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31334226)

  • 1. Rational Engineering of Chorismate-Related Pathways in
    Guo W; Huang Q; Liu H; Hou S; Niu S; Jiang Y; Bao X; Shen Y; Fang X
    Front Bioeng Biotechnol; 2019; 7():152. PubMed ID: 31334226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rewiring central carbon metabolism for tyrosol and salidroside production in Saccharomyces cerevisiae.
    Guo W; Huang Q; Feng Y; Tan T; Niu S; Hou S; Chen Z; Du ZQ; Shen Y; Fang X
    Biotechnol Bioeng; 2020 Aug; 117(8):2410-2419. PubMed ID: 32369184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics.
    Gold ND; Gowen CM; Lussier FX; Cautha SC; Mahadevan R; Martin VJ
    Microb Cell Fact; 2015 May; 14():73. PubMed ID: 26016674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-modular engineering of Saccharomyces cerevisiae for high-titre production of tyrosol and salidroside.
    Liu H; Tian Y; Zhou Y; Kan Y; Wu T; Xiao W; Luo Y
    Microb Biotechnol; 2021 Nov; 14(6):2605-2616. PubMed ID: 32990403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis.
    Rodriguez A; Kildegaard KR; Li M; Borodina I; Nielsen J
    Metab Eng; 2015 Sep; 31():181-8. PubMed ID: 26292030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial bifunctional chorismate mutase-prephenate dehydratase PheA increases flux into the yeast phenylalanine pathway and improves mandelic acid production.
    Reifenrath M; Bauer M; Oreb M; Boles E
    Metab Eng Commun; 2018 Dec; 7():e00079. PubMed ID: 30370221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Level Production of Hydroxytyrosol in Engineered
    Liu H; Wu X; Ma H; Li J; Liu Z; Guo X; Dong J; Zou S; Luo Y
    ACS Synth Biol; 2022 Nov; 11(11):3706-3713. PubMed ID: 36345886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational engineering of the shikimate and related pathways in Corynebacterium glutamicum for 4-hydroxybenzoate production.
    Syukur Purwanto H; Kang MS; Ferrer L; Han SS; Lee JY; Kim HS; Lee JH
    J Biotechnol; 2018 Sep; 282():92-100. PubMed ID: 30031819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Eschericha coli for Enhanced Tyrosol Production.
    Xue Y; Chen X; Yang C; Chang J; Shen W; Fan Y
    J Agric Food Chem; 2017 Jun; 65(23):4708-4714. PubMed ID: 28530096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic Engineering of Saccharomyces cerevisiae for High-Level Production of Salidroside from Glucose.
    Jiang J; Yin H; Wang S; Zhuang Y; Liu S; Liu T; Ma Y
    J Agric Food Chem; 2018 May; 66(17):4431-4438. PubMed ID: 29671328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elimination of aromatic fusel alcohols as by-products of
    Hassing EJ; Buijs J; Blankerts N; Luttik MA; Hulster EA; Pronk JT; Daran JM
    Metab Eng Commun; 2021 Dec; 13():e00183. PubMed ID: 34584841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of an Escherichia coli cell factory for de novo synthesis of tyrosol through semi-rational design based on phenylpyruvate decarboxylase ARO10 engineering.
    Xia Y; Qi L; Shi X; Chen K; Peplowski L; Chen X
    Int J Biol Macromol; 2023 Dec; 253(Pt 7):127385. PubMed ID: 37848109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosensor-Enabled Directed Evolution to Improve Muconic Acid Production in Saccharomyces cerevisiae.
    Leavitt JM; Wagner JM; Tu CC; Tong A; Liu Y; Alper HS
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28296355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway.
    Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I
    Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering.
    Chen Y; Xiao W; Wang Y; Liu H; Li X; Yuan Y
    Microb Cell Fact; 2016 Jun; 15(1):113. PubMed ID: 27329233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Level Production of Tyrosol with Noninduced Recombinant
    Xu W; Yang C; Xia Y; Zhang L; Liu C; Yang H; Shen W; Chen X
    J Agric Food Chem; 2020 Apr; 68(16):4616-4623. PubMed ID: 32208625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering a Synthetic Pathway for Tyrosol Synthesis in
    Lai Y; Chen H; Liu L; Fu B; Wu P; Li W; Hu J; Yuan J
    ACS Synth Biol; 2022 Jan; 11(1):441-447. PubMed ID: 34985865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo instability of chorismate causes substrate loss during fermentative production of aromatics.
    Winter G; Averesch NJ; Nunez-Bernal D; Krömer JO
    Yeast; 2014 Sep; 31(9):333-41. PubMed ID: 24981409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae.
    Kondo T; Tezuka H; Ishii J; Matsuda F; Ogino C; Kondo A
    J Biotechnol; 2012 May; 159(1-2):32-7. PubMed ID: 22342368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathway engineering for the production of heterologous aromatic chemicals and their derivatives in Saccharomyces cerevisiae: bioconversion from glucose.
    Gottardi M; Reifenrath M; Boles E; Tripp J
    FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28582489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.