These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 31334497)
1. Development and validation of a physiologically based kinetic model for starting up and operation of the biological gas desulfurization process under haloalkaline conditions. Kiragosyan K; Klok JBM; Keesman KJ; Roman P; Janssen AJH Water Res X; 2019 Aug; 4():100035. PubMed ID: 31334497 [TBL] [Abstract][Full Text] [Related]
2. Influence of oxidation-reduction potential and pH on polysulfide concentrations and chain lengths in the biological desulfurization process under haloalkaline conditions. Johnston KAKY; van Lankveld M; de Rink R; Mol AR; Keesman KJ; Buisman CJN Water Res; 2024 Aug; 259():121795. PubMed ID: 38889663 [TBL] [Abstract][Full Text] [Related]
3. Development of quantitative PCR for the detection of Alkalilimnicola ehrlichii, Thioalkalivibrio sulfidiphilus and Thioalkalibacter halophilus in gas biodesulfurization processes. Kiragosyan K; van Veelen P; Gupta S; Tomaszewska-Porada A; Roman P; Timmers PHA AMB Express; 2019 Jul; 9(1):99. PubMed ID: 31278455 [TBL] [Abstract][Full Text] [Related]
4. Comparative analysis of microbial communities from different full-scale haloalkaline biodesulfurization systems. Gupta S; Plugge CM; Klok JBM; Muyzer G Appl Microbiol Biotechnol; 2022 Feb; 106(4):1759-1776. PubMed ID: 35147744 [TBL] [Abstract][Full Text] [Related]
5. A physiologically based kinetic model for bacterial sulfide oxidation. Klok JB; de Graaff M; van den Bosch PL; Boelee NC; Keesman KJ; Janssen AJ Water Res; 2013 Feb; 47(2):483-92. PubMed ID: 23177655 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of a biological sulfide oxidation under haloalkaline conditions by thiols and diorgano polysulfanes. Roman P; Lipińska J; Bijmans MFM; Sorokin DY; Keesman KJ; Janssen AJH Water Res; 2016 Sep; 101():448-456. PubMed ID: 27295619 [TBL] [Abstract][Full Text] [Related]
7. Heterologous expression of sulfur: quinone oxidoreductase (Sqr) to improve Thioalkalivibrio versutus D301 desulfurization performance. Tian Z; Yu C; Li H; Song B; Lv J; Liu C; Sun W; Hu X; Xiong Y; Liu J; Cheng X; Yang M; Xing J J Appl Microbiol; 2024 Sep; 135(9):. PubMed ID: 39264044 [TBL] [Abstract][Full Text] [Related]
8. Biologically enhanced hydrogen sulfide absorption from sour gas under haloalkaline conditions. de Rink R; Klok JBM; van Heeringen GJ; Keesman KJ; Janssen AJH; Ter Heijne A; Buisman CJN J Hazard Mater; 2020 Feb; 383():121104. PubMed ID: 31586887 [TBL] [Abstract][Full Text] [Related]
9. Roles, mechanism of action, and potential applications of sulfur-oxidizing bacteria for environmental bioremediation. Nguyen PM; Do PT; Pham YB; Doan TO; Nguyen XC; Lee WK; Nguyen DD; Vadiveloo A; Um MJ; Ngo HH Sci Total Environ; 2022 Dec; 852():158203. PubMed ID: 36044953 [TBL] [Abstract][Full Text] [Related]
10. Effect of methanethiol on process performance, selectivity and diversity of sulfur-oxidizing bacteria in a dual bioreactor gas biodesulfurization system. Kiragosyan K; Picard M; Timmers PHA; Sorokin DY; Klok JBM; Roman P; Janssen AJH J Hazard Mater; 2020 Nov; 398():123002. PubMed ID: 32506049 [TBL] [Abstract][Full Text] [Related]
11. Bacteria as an Electron Shuttle for Sulfide Oxidation. Ter Heijne A; de Rink R; Liu D; Klok JBM; Buisman CJN Environ Sci Technol Lett; 2018 Aug; 5(8):495-499. PubMed ID: 30135862 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms of sulfur selection and sulfur secretion in a biological sulfide removal (BISURE) system. Li W; Zhang M; Kang D; Chen W; Yu T; Xu D; Zeng Z; Li Y; Zheng P Environ Int; 2020 Apr; 137():105549. PubMed ID: 32086075 [TBL] [Abstract][Full Text] [Related]
13. Process conditions affect microbial diversity and activity in a haloalkaline biodesulfurization system. Gupta S; de Rink R; Klok JBM; Muyzer G; Plugge CM Appl Environ Microbiol; 2024 Jan; 90(1):e0186423. PubMed ID: 38078763 [TBL] [Abstract][Full Text] [Related]
14. Effect of dimethyl disulfide on the sulfur formation and microbial community composition during the biological H Kiragosyan K; Picard M; Sorokin DY; Dijkstra J; Klok JBM; Roman P; Janssen AJH J Hazard Mater; 2020 Mar; 386():121916. PubMed ID: 31884361 [TBL] [Abstract][Full Text] [Related]
15. Effect of Methanethiol Concentration on Sulfur Production in Biological Desulfurization Systems under Haloalkaline Conditions. Roman P; Veltman R; Bijmans MF; Keesman KJ; Janssen AJ Environ Sci Technol; 2015 Aug; 49(15):9212-21. PubMed ID: 26154624 [TBL] [Abstract][Full Text] [Related]
17. Cupriavidus necator H16 Uses Flavocytochrome Lü C; Xia Y; Liu D; Zhao R; Gao R; Liu H; Xun L Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28864655 [TBL] [Abstract][Full Text] [Related]
18. Functional genes based analysis of sulfur-oxidizing bacteria community in sulfide removing bioreactor. Luo JF; Lin WT; Guo Y Appl Microbiol Biotechnol; 2011 Apr; 90(2):769-78. PubMed ID: 21212946 [TBL] [Abstract][Full Text] [Related]
19. Increasing the Selectivity for Sulfur Formation in Biological Gas Desulfurization. de Rink R; Klok JBM; van Heeringen GJ; Sorokin DY; Ter Heijne A; Zeijlmaker R; Mos YM; de Wilde V; Keesman KJ; Buisman CJN Environ Sci Technol; 2019 Apr; 53(8):4519-4527. PubMed ID: 30882225 [TBL] [Abstract][Full Text] [Related]
20. Thiosulfate Conversion to Sulfide by a Haloalkaliphilic Microbial Community in a Bioreactor Fed with H Sousa JA; Bijmans MF; Stams AJ; Plugge CM Environ Sci Technol; 2017 Jan; 51(2):914-923. PubMed ID: 27997142 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]