These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 31334527)

  • 1. Assessing collagen fibrils molecular damage after a single stretch-release cycle.
    Iqbal SMA; Deska-Gauthier D; Kreplak L
    Soft Matter; 2019 Aug; 15(30):6237-6246. PubMed ID: 31334527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collagen fibrils from both positional and energy-storing tendons exhibit increased amounts of denatured collagen when stretched beyond the yield point.
    Lin AH; Slater CA; Martinez CJ; Eppell SJ; Yu SM; Weiss JA
    Acta Biomater; 2023 Jan; 155():461-470. PubMed ID: 36400348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collagen fibrils in functionally distinct tendons have differing structural responses to tendon rupture and fatigue loading.
    Herod TW; Chambers NC; Veres SP
    Acta Biomater; 2016 Sep; 42():296-307. PubMed ID: 27321189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructural response of tendon to excessive level or duration of tensile load supports that collagen fibrils are mechanically continuous.
    Hijazi KM; Singfield KL; Veres SP
    J Mech Behav Biomed Mater; 2019 Sep; 97():30-40. PubMed ID: 31085458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bowstring Stretching and Quantitative Imaging of Single Collagen Fibrils via Atomic Force Microscopy.
    Quigley AS; Veres SP; Kreplak L
    PLoS One; 2016; 11(9):e0161951. PubMed ID: 27598334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tendons exhibit greater resistance to tissue and molecular-level damage with increasing strain rate during cyclic fatigue.
    Zitnay JL; Lin AH; Weiss JA
    Acta Biomater; 2021 Oct; 134():435-442. PubMed ID: 34314889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining tensile testing and structural analysis at the single collagen fibril level.
    Quigley AS; Bancelin S; Deska-Gauthier D; Légaré F; Veres SP; Kreplak L
    Sci Data; 2018 Oct; 5():180229. PubMed ID: 30351303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructure of tendon rupture depends on strain rate and tendon type.
    Chambers NC; Herod TW; Veres SP
    J Orthop Res; 2018 Nov; 36(11):2842-2850. PubMed ID: 29901228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single collagen fibrils isolated from high stress and low stress tendons show differing susceptibility to enzymatic degradation by the interstitial collagenase matrix metalloproteinase-1 (MMP-1).
    Gsell KY; Veres SP; Kreplak L
    Matrix Biol Plus; 2023 Jun; 18():100129. PubMed ID: 36915648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In tendons, differing physiological requirements lead to functionally distinct nanostructures.
    Quigley AS; Bancelin S; Deska-Gauthier D; Légaré F; Kreplak L; Veres SP
    Sci Rep; 2018 Mar; 8(1):4409. PubMed ID: 29535366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of overuse tendinopathy: A new descriptive model for the initiation of tendon damage during cyclic loading.
    Herod TW; Veres SP
    J Orthop Res; 2018 Jan; 36(1):467-476. PubMed ID: 28598009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced glycation end-product cross-linking inhibits biomechanical plasticity and characteristic failure morphology of native tendon.
    Lee JM; Veres SP
    J Appl Physiol (1985); 2019 Apr; 126(4):832-841. PubMed ID: 30653412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of testing temperature on the nanostructural response of tendon to tensile mechanical overload.
    KarisAllen JJ; Veres SP
    J Biomech; 2020 May; 104():109720. PubMed ID: 32156441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repeated subrupture overload causes progression of nanoscaled discrete plasticity damage in tendon collagen fibrils.
    Veres SP; Harrison JM; Lee JM
    J Orthop Res; 2013 May; 31(5):731-7. PubMed ID: 23255142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanically overloading collagen fibrils uncoils collagen molecules, placing them in a stable, denatured state.
    Veres SP; Harrison JM; Lee JM
    Matrix Biol; 2014 Jan; 33():54-9. PubMed ID: 23880369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MMP-9 selectively cleaves non-D-banded material on collagen fibrils with discrete plasticity damage in mechanically-overloaded tendon.
    Baldwin SJ; Kreplak L; Lee JM
    J Mech Behav Biomed Mater; 2019 Jul; 95():67-75. PubMed ID: 30954916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale characterization of collagen structural responses to in situ loading in rat Achilles tendons.
    Silva Barreto I; Pierantoni M; Hammerman M; Törnquist E; Le Cann S; Diaz A; Engqvist J; Liebi M; Eliasson P; Isaksson H
    Matrix Biol; 2023 Jan; 115():32-47. PubMed ID: 36435426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of maturation and advanced glycation on tensile mechanics of collagen fibrils from rat tail and Achilles tendons.
    Svensson RB; Smith ST; Moyer PJ; Magnusson SP
    Acta Biomater; 2018 Apr; 70():270-280. PubMed ID: 29447959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased stiffness of collagen fibrils following cyclic tensile loading.
    Chen ML; Ruberti JW; Nguyen TD
    J Mech Behav Biomed Mater; 2018 Jun; 82():345-354. PubMed ID: 29655120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tendon glycosaminoglycan proteoglycan sidechains promote collagen fibril sliding-AFM observations at the nanoscale.
    Rigozzi S; Müller R; Stemmer A; Snedeker JG
    J Biomech; 2013 Feb; 46(4):813-8. PubMed ID: 23219277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.