These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 31334812)

  • 1. Quantifying gene selection in cancer through protein functional alteration bias.
    Brandes N; Linial N; Linial M
    Nucleic Acids Res; 2019 Jul; 47(13):6642-6655. PubMed ID: 31334812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying Driver Interfaces Enriched for Somatic Missense Mutations in Tumors.
    Ozturk K; Carter H
    Methods Mol Biol; 2019; 1907():51-72. PubMed ID: 30542990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the functional consequences of somatic missense mutations found in tumors.
    Carter H; Karchin R
    Methods Mol Biol; 2014; 1101():135-59. PubMed ID: 24233781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequent mutations in acetylation and ubiquitination sites suggest novel driver mechanisms of cancer.
    Narayan S; Bader GD; Reimand J
    Genome Med; 2016 May; 8(1):55. PubMed ID: 27175787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein dynamics analysis identifies candidate cancer driver genes and mutations in TCGA data.
    Sayılgan JF; Haliloğlu T; Gönen M
    Proteins; 2021 Jun; 89(6):721-730. PubMed ID: 33550612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The FABRIC Cancer Portal: A Ranked Catalogue of Gene Selection in Tumors Over the Human Coding Genome.
    Kelman G; Brandes N; Linial M
    Cancer Res; 2021 Feb; 81(4):1178-1185. PubMed ID: 33277365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene characteristics predicting missense, nonsense and frameshift mutations in tumor samples.
    Gorlov IP; Pikielny CW; Frost HR; Her SC; Cole MD; Strohbehn SD; Wallace-Bradley D; Kimmel M; Gorlova OY; Amos CI
    BMC Bioinformatics; 2018 Nov; 19(1):430. PubMed ID: 30453881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of different functional prediction scores using a gene-based permutation model for identifying cancer driver genes.
    Nono AD; Chen K; Liu X
    BMC Med Genomics; 2019 Jan; 12(Suppl 1):22. PubMed ID: 30704472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DriverML: a machine learning algorithm for identifying driver genes in cancer sequencing studies.
    Han Y; Yang J; Qian X; Cheng WC; Liu SH; Hua X; Zhou L; Yang Y; Wu Q; Liu P; Lu Y
    Nucleic Acids Res; 2019 May; 47(8):e45. PubMed ID: 30773592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cancer Gene Discovery by Network Analysis of Somatic Mutations Using the MUFFINN Server.
    Han H; Lehner B; Lee I
    Methods Mol Biol; 2019; 1907():37-50. PubMed ID: 30542989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CHASMplus Reveals the Scope of Somatic Missense Mutations Driving Human Cancers.
    Tokheim C; Karchin R
    Cell Syst; 2019 Jul; 9(1):9-23.e8. PubMed ID: 31202631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OncodriveCLUST: exploiting the positional clustering of somatic mutations to identify cancer genes.
    Tamborero D; Gonzalez-Perez A; Lopez-Bigas N
    Bioinformatics; 2013 Sep; 29(18):2238-44. PubMed ID: 23884480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DrGaP: a powerful tool for identifying driver genes and pathways in cancer sequencing studies.
    Hua X; Xu H; Yang Y; Zhu J; Liu P; Lu Y
    Am J Hum Genet; 2013 Sep; 93(3):439-51. PubMed ID: 23954162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the evaluation of cancer driver genes.
    Tokheim CJ; Papadopoulos N; Kinzler KW; Vogelstein B; Karchin R
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14330-14335. PubMed ID: 27911828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finding co-mutated genes and candidate cancer genes in cancer genomes by stratified false discovery rate control.
    Wang J; Zhang Y; Shen X; Zhu J; Zhang L; Zou J; Guo Z
    Mol Biosyst; 2011 Apr; 7(4):1158-66. PubMed ID: 21279201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of constrained cancer driver genes based on mutation timing.
    Sakoparnig T; Fried P; Beerenwinkel N
    PLoS Comput Biol; 2015 Jan; 11(1):e1004027. PubMed ID: 25569148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. e-Driver: a novel method to identify protein regions driving cancer.
    Porta-Pardo E; Godzik A
    Bioinformatics; 2014 Nov; 30(21):3109-14. PubMed ID: 25064568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revealing selection in cancer using the predicted functional impact of cancer mutations. Application to nomination of cancer drivers.
    Reva B
    BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S8. PubMed ID: 23819556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leveraging protein dynamics to identify cancer mutational hotspots using 3D structures.
    Kumar S; Clarke D; Gerstein MB
    Proc Natl Acad Sci U S A; 2019 Sep; 116(38):18962-18970. PubMed ID: 31462496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Dual Model for Prioritizing Cancer Mutations in the Non-coding Genome Based on Germline and Somatic Events.
    Li J; Poursat MA; Drubay D; Motz A; Saci Z; Morillon A; Michiels S; Gautheret D
    PLoS Comput Biol; 2015 Nov; 11(11):e1004583. PubMed ID: 26588488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.