These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31334814)

  • 1. Rational design of an XNA ligase through docking of unbound nucleic acids to toroidal proteins.
    Vanmeert M; Razzokov J; Mirza MU; Weeks SD; Schepers G; Bogaerts A; Rozenski J; Froeyen M; Herdewijn P; Pinheiro VB; Lescrinier E
    Nucleic Acids Res; 2019 Jul; 47(13):7130-7142. PubMed ID: 31334814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional dissection of the DNA interface of the nucleotidyltransferase domain of chlorella virus DNA ligase.
    Samai P; Shuman S
    J Biol Chem; 2011 Apr; 286(15):13314-26. PubMed ID: 21335605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational design of an XNA ligase through docking of unbound nucleic acids to toroidal proteins.
    Vanmeert M; Razzokov J; Mirza MU; Weeks SD; Schepers G; Bogaerts A; Rozenski J; Froeyen M; Herdewijn P; Pinheiro VB; Lescrinier E
    Nucleic Acids Res; 2019 Dec; 47(22):11976-11977. PubMed ID: 31713624
    [No Abstract]   [Full Text] [Related]  

  • 4. Human DNA ligase I completely encircles and partially unwinds nicked DNA.
    Pascal JM; O'Brien PJ; Tomkinson AE; Ellenberger T
    Nature; 2004 Nov; 432(7016):473-8. PubMed ID: 15565146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-function analysis of the OB and latch domains of chlorella virus DNA ligase.
    Samai P; Shuman S
    J Biol Chem; 2011 Jun; 286(25):22642-52. PubMed ID: 21527793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic mechanism of nick recognition by DNA ligase.
    Cherepanov AV; de Vries S
    Eur J Biochem; 2002 Dec; 269(24):5993-9. PubMed ID: 12473094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fidelity of RNA templated end-joining by chlorella virus DNA ligase and a novel iLock assay with improved direct RNA detection accuracy.
    Krzywkowski T; Nilsson M
    Nucleic Acids Res; 2017 Oct; 45(18):e161. PubMed ID: 29048593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directed evolution of artificial enzymes (XNAzymes) from diverse repertoires of synthetic genetic polymers.
    Taylor AI; Holliger P
    Nat Protoc; 2015 Oct; 10(10):1625-42. PubMed ID: 26401917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polynucleotide 3'-terminal phosphate modifications by RNA and DNA ligases.
    Zhelkovsky AM; McReynolds LA
    J Biol Chem; 2014 Nov; 289(48):33608-16. PubMed ID: 25324547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution NMR studies of Chlorella virus DNA ligase-adenylate.
    Piserchio A; Nair PA; Shuman S; Ghose R
    J Mol Biol; 2010 Jan; 395(2):291-308. PubMed ID: 19913033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA ligases in the repair and replication of DNA.
    Timson DJ; Singleton MR; Wigley DB
    Mutat Res; 2000 Aug; 460(3-4):301-18. PubMed ID: 10946235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA ligases.
    Lohman GJ; Tabor S; Nichols NM
    Curr Protoc Mol Biol; 2011 Apr; Chapter 3():Unit3.14. PubMed ID: 21472697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacteriophage origin of some minimal ATP-dependent DNA ligases: a new structure from Burkholderia pseudomallei with striking similarity to Chlorella virus ligase.
    Pan J; Lian K; Sarre A; Leiros HS; Williamson A
    Sci Rep; 2021 Sep; 11(1):18693. PubMed ID: 34548548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic analysis of DNA strand joining by Chlorella virus DNA ligase and the role of nucleotidyltransferase motif VI in ligase adenylylation.
    Samai P; Shuman S
    J Biol Chem; 2012 Aug; 287(34):28609-18. PubMed ID: 22745124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphonomethyl Oligonucleotides as Backbone-Modified Artificial Genetic Polymers.
    Liu C; Cozens C; Jaziri F; Rozenski J; Maréchal A; Dumbre S; Pezo V; Marlière P; Pinheiro VB; Groaz E; Herdewijn P
    J Am Chem Soc; 2018 May; 140(21):6690-6699. PubMed ID: 29722977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of an ATP-dependent DNA ligase from bacteriophage T7.
    Subramanya HS; Doherty AJ; Ashford SR; Wigley DB
    Cell; 1996 May; 85(4):607-15. PubMed ID: 8653795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Footprinting of Chlorella virus DNA ligase bound at a nick in duplex DNA.
    Odell M; Shuman S
    J Biol Chem; 1999 May; 274(20):14032-9. PubMed ID: 10318816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional Comparison of Laboratory-Evolved XNA Polymerases for Synthetic Biology.
    Medina E; Yik EJ; Herdewijn P; Chaput JC
    ACS Synth Biol; 2021 Jun; 10(6):1429-1437. PubMed ID: 34029459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA binding with a minimal scaffold: structure-function analysis of Lig E DNA ligases.
    Williamson A; Grgic M; Leiros HS
    Nucleic Acids Res; 2018 Sep; 46(16):8616-8629. PubMed ID: 30007325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compartmentalized Self-Tagging for In Vitro-Directed Evolution of XNA Polymerases.
    Pinheiro VB; Arangundy-Franklin S; Holliger P
    Curr Protoc Nucleic Acid Chem; 2014 Jun; 57():9.9.1-18. PubMed ID: 24961724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.