BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 31335885)

  • 1. Telomere length and its correlation with gene mutations in chronic lymphocytic leukemia in a Korean population.
    Song DY; Kim JA; Jeong D; Yun J; Kim SM; Lim K; Park SN; Im K; Choi S; Yoon SS; Lee DS
    PLoS One; 2019; 14(7):e0220177. PubMed ID: 31335885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short telomere length is associated with NOTCH1/SF3B1/TP53 aberrations and poor outcome in newly diagnosed chronic lymphocytic leukemia patients.
    Mansouri L; Grabowski P; Degerman S; Svenson U; Gunnarsson R; Cahill N; Smedby KE; Geisler C; Juliusson G; Roos G; Rosenquist R
    Am J Hematol; 2013 Aug; 88(8):647-51. PubMed ID: 23620080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Telomere shortening, TP53 mutations and deletions in chronic lymphocytic leukemia result in increased chromosomal instability and breakpoint clustering in heterochromatic regions.
    Thomay K; Fedder C; Hofmann W; Kreipe H; Stadler M; Titgemeyer J; Zander I; Schlegelberger B; Göhring G
    Ann Hematol; 2017 Sep; 96(9):1493-1500. PubMed ID: 28691153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Telomere shortening associated with increased genomic complexity in chronic lymphocytic leukemia.
    Dos Santos P; Panero J; Palau Nagore V; Stanganelli C; Bezares RF; Slavutsky I
    Tumour Biol; 2015 Nov; 36(11):8317-24. PubMed ID: 26008147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prognostic significance of ATM and TP53 deletions in Chinese patients with chronic lymphocytic leukemia.
    Xu W; Li JY; Wu YJ; Yu H; Shen QD; Li L; Fan L; Qiu HX
    Leuk Res; 2008 Jul; 32(7):1071-7. PubMed ID: 18035414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short telomere length and its correlation with gene mutations in myelodysplastic syndrome.
    Hwang SM; Kim SY; Kim JA; Park HS; Park SN; Im K; Kim K; Kim SM; Lee DS
    J Hematol Oncol; 2016 Jul; 9(1):62. PubMed ID: 27465399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extensive next-generation sequencing analysis in chronic lymphocytic leukemia at diagnosis: clinical and biological correlations.
    Rigolin GM; Saccenti E; Bassi C; Lupini L; Quaglia FM; Cavallari M; Martinelli S; Formigaro L; Lista E; Bardi MA; Volta E; Tammiso E; Melandri A; Urso A; Cavazzini F; Negrini M; Cuneo A
    J Hematol Oncol; 2016 Sep; 9(1):88. PubMed ID: 27633522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of Western common recurrent chromosomal aberrations in Korean chronic lymphocytic leukaemia patients with very low incidence.
    Yoon JH; Kim Y; Yahng SA; Shin SH; Lee SE; Cho BS; Eom KS; Kim YJ; Lee S; Kim HJ; Min CK; Kim DW; Lee JW; Min WS; Park CW; Lim J; Kim Y; Han K; Kim M; Cho SG
    Hematol Oncol; 2014 Dec; 32(4):169-77. PubMed ID: 24123081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Telomere length in poor-risk chronic lymphocytic leukemia: associations with disease characteristics and outcome.
    Steinbrecher D; Jebaraj BMC; Schneider C; Edelmann J; Cymbalista F; Leblond V; Delmer A; Ibach S; Tausch E; Scheffold A; Bloehdorn J; Hallek M; Dreger P; Döhner H; Stilgenbauer S
    Leuk Lymphoma; 2018 Jul; 59(7):1614-1623. PubMed ID: 29063805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Telomere status in chronic lymphocytic leukemia with TP53 disruption.
    Guièze R; Pages M; Véronèse L; Combes P; Lemal R; Gay-Bellile M; Chauvet M; Callanan M; Kwiatkowski F; Pereira B; Vago P; Bay JO; Tournilhac O; Tchirkov A
    Oncotarget; 2016 Aug; 7(35):56976-56985. PubMed ID: 27486974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prognostic significance of ATM mutations in chronic lymphocytic leukemia: A meta-analysis.
    Baghaei Vaji F; Boroumand Nasr A; Rezvani A; Ayatollahi H; Goudarzi S; Lavasani S; Bagheri R
    Leuk Res; 2021 Dec; 111():106729. PubMed ID: 34735935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytogenetic landscape in 1012 newly diagnosed chronic lymphocytic leukemia.
    Senouci A; Smol T; Tricot S; Bakala J; Moulessehoul S; Quilichini B; Penther D; Herbaux C; Daudignon A
    Eur J Haematol; 2019 Dec; 103(6):607-613. PubMed ID: 31512291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of gene mutations and chromosomal aberrations on progression-free survival in chronic lymphocytic leukemia patients treated with front-line chemoimmunotherapy: Clinical practice experience.
    Spunarova M; Tom N; Pavlova S; Mraz M; Brychtova Y; Doubek M; Panovska A; Skuhrova Francova H; Brzobohata A; Pospisilova S; Mayer J; Trbusek M
    Leuk Res; 2019 Jun; 81():75-81. PubMed ID: 31054420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Late appearance of the 11q22.3-23.1 deletion involving the ATM locus in B-cell chronic lymphocytic leukemia and related disorders. Clinico-biological significance.
    Cuneo A; Bigoni R; Rigolin GM; Roberti MG; Bardi A; Cavazzini F; Milani R; Minotto C; Tieghi A; Della Porta M; Agostini P; Tammiso E; Negrini M; Castoldi G
    Haematologica; 2002 Jan; 87(1):44-51. PubMed ID: 11801464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic features of B-cell chronic lymphocytic leukemia.
    Stilgenbauer S; Lichter P; Döhner H
    Rev Clin Exp Hematol; 2000 Mar; 4(1):48-72. PubMed ID: 11486330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Major prognostic value of complex karyotype in addition to TP53 and IGHV mutational status in first-line chronic lymphocytic leukemia.
    Le Bris Y; Struski S; Guièze R; Rouvellat C; Prade N; Troussard X; Tournilhac O; Béné MC; Delabesse E; Ysebaert L
    Hematol Oncol; 2017 Dec; 35(4):664-670. PubMed ID: 27678008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The detection of TP53 mutations in chronic lymphocytic leukemia independently predicts rapid disease progression and is highly correlated with a complex aberrant karyotype.
    Dicker F; Herholz H; Schnittger S; Nakao A; Patten N; Wu L; Kern W; Haferlach T; Haferlach C
    Leukemia; 2009 Jan; 23(1):117-24. PubMed ID: 18843282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incidence and clinical implications of ATM aberrations in chronic lymphocytic leukemia.
    Ouillette P; Li J; Shaknovich R; Li Y; Melnick A; Shedden K; Malek SN
    Genes Chromosomes Cancer; 2012 Dec; 51(12):1125-32. PubMed ID: 22952040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic lymphocytic leukemia with proliferation centers in bone marrow is associated with younger age at initial presentation, complex karyotype, and TP53 disruption.
    Garces S; Khoury JD; Kanagal-Shamanna R; Salem A; Wang SA; Ok CY; Hu S; Patel KP; Routbort MJ; Luthra R; Tang G; Schlette EJ; Bueso-Ramos CE; Medeiros LJ; Loghavi S
    Hum Pathol; 2018 Dec; 82():215-231. PubMed ID: 30086334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two mouse models reveal an actionable PARP1 dependence in aggressive chronic lymphocytic leukemia.
    Knittel G; Rehkämper T; Korovkina D; Liedgens P; Fritz C; Torgovnick A; Al-Baldawi Y; Al-Maarri M; Cun Y; Fedorchenko O; Riabinska A; Beleggia F; Nguyen PH; Wunderlich FT; Ortmann M; Montesinos-Rongen M; Tausch E; Stilgenbauer S; P Frenzel L; Herling M; Herling C; Bahlo J; Hallek M; Peifer M; Buettner R; Persigehl T; Reinhardt HC
    Nat Commun; 2017 Jul; 8(1):153. PubMed ID: 28751718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.