These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 31336332)

  • 1. Towards functional de novo designed proteins.
    Dawson WM; Rhys GG; Woolfson DN
    Curr Opin Chem Biol; 2019 Oct; 52():102-111. PubMed ID: 31336332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rosetta FunFolDes - A general framework for the computational design of functional proteins.
    Bonet J; Wehrle S; Schriever K; Yang C; Billet A; Sesterhenn F; Scheck A; Sverrisson F; Veselkova B; Vollers S; Lourman R; Villard M; Rosset S; Krey T; Correia BE
    PLoS Comput Biol; 2018 Nov; 14(11):e1006623. PubMed ID: 30452434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational tools for designing and engineering biocatalysts.
    Damborsky J; Brezovsky J
    Curr Opin Chem Biol; 2009 Feb; 13(1):26-34. PubMed ID: 19297237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational protein design with backbone plasticity.
    MacDonald JT; Freemont PS
    Biochem Soc Trans; 2016 Oct; 44(5):1523-1529. PubMed ID: 27911735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational approaches for
    Akcapinar GB; Sezerman OU
    Biosci Rep; 2017 Apr; 37(2):. PubMed ID: 28167677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress in computational protein design.
    Lippow SM; Tidor B
    Curr Opin Biotechnol; 2007 Aug; 18(4):305-11. PubMed ID: 17644370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An accurate binding interaction model in de novo computational protein design of interactions: if you build it, they will bind.
    London N; Ambroggio X
    J Struct Biol; 2014 Feb; 185(2):136-46. PubMed ID: 23558036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bottom-up de novo design of functional proteins with complex structural features.
    Yang C; Sesterhenn F; Bonet J; van Aalen EA; Scheller L; Abriata LA; Cramer JT; Wen X; Rosset S; Georgeon S; Jardetzky T; Krey T; Fussenegger M; Merkx M; Correia BE
    Nat Chem Biol; 2021 Apr; 17(4):492-500. PubMed ID: 33398169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Achievements and Challenges in Computational Protein Design.
    Samish I
    Methods Mol Biol; 2017; 1529():21-94. PubMed ID: 27914045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of Molecular Dynamics Based Predictions into the Optimization of De Novo Protein Designs: Limitations and Benefits.
    Carvalho HF; Barbosa AJ; Roque AC; Iranzo O; Branco RJ
    Methods Mol Biol; 2017; 1529():181-201. PubMed ID: 27914051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Brief History of De Novo Protein Design: Minimal, Rational, and Computational.
    Woolfson DN
    J Mol Biol; 2021 Oct; 433(20):167160. PubMed ID: 34298061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational design of a leucine-rich repeat protein with a predefined geometry.
    Rämisch S; Weininger U; Martinsson J; Akke M; André I
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):17875-80. PubMed ID: 25427795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in computational protein design.
    Park S; Yang X; Saven JG
    Curr Opin Struct Biol; 2004 Aug; 14(4):487-94. PubMed ID: 15313244
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Korendovych IV; DeGrado WF
    Q Rev Biophys; 2020 Feb; 53():e3. PubMed ID: 32041676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of proteins with molecular recognition capabilities using α3β3 de novo protein scaffolds.
    Okura H; Mihara H; Takahashi T
    Protein Eng Des Sel; 2013 Oct; 26(10):705-11. PubMed ID: 24046439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational tools for designing and engineering enzymes.
    Damborsky J; Brezovsky J
    Curr Opin Chem Biol; 2014 Apr; 19():8-16. PubMed ID: 24780274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New computational protein design methods for de novo small molecule binding sites.
    Lucas JE; Kortemme T
    PLoS Comput Biol; 2020 Oct; 16(10):e1008178. PubMed ID: 33017412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast, cheap and out of control--Insights into thermodynamic and informatic constraints on natural protein sequences from de novo protein design.
    Brisendine JM; Koder RL
    Biochim Biophys Acta; 2016 May; 1857(5):485-492. PubMed ID: 26498191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De Novo Design of Four-Helix Bundle Metalloproteins: One Scaffold, Diverse Reactivities.
    Lombardi A; Pirro F; Maglio O; Chino M; DeGrado WF
    Acc Chem Res; 2019 May; 52(5):1148-1159. PubMed ID: 30973707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein Engineering Approaches in the Post-Genomic Era.
    Singh RK; Lee JK; Selvaraj C; Singh R; Li J; Kim SY; Kalia VC
    Curr Protein Pept Sci; 2018; 19(1):5-15. PubMed ID: 27855603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.