BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 31336695)

  • 1. Loss of Non-Apoptotic Role of Caspase-3 in the PINK1 Mouse Model of Parkinson's Disease.
    Imbriani P; Tassone A; Meringolo M; Ponterio G; Madeo G; Pisani A; Bonsi P; Martella G
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31336695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exposure to low-dose rotenone precipitates synaptic plasticity alterations in PINK1 heterozygous knockout mice.
    Martella G; Madeo G; Maltese M; Vanni V; Puglisi F; Ferraro E; Schirinzi T; Valente EM; Bonanni L; Shen J; Mandolesi G; Mercuri NB; Bonsi P; Pisani A
    Neurobiol Dis; 2016 Jul; 91():21-36. PubMed ID: 26916954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice.
    Kitada T; Pisani A; Porter DR; Yamaguchi H; Tscherter A; Martella G; Bonsi P; Zhang C; Pothos EN; Shen J
    Proc Natl Acad Sci U S A; 2007 Jul; 104(27):11441-6. PubMed ID: 17563363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PINK1 heterozygous mutations induce subtle alterations in dopamine-dependent synaptic plasticity.
    Madeo G; Schirinzi T; Martella G; Latagliata EC; Puglisi F; Shen J; Valente EM; Federici M; Mercuri NB; Puglisi-Allegra S; Bonsi P; Pisani A
    Mov Disord; 2014 Jan; 29(1):41-53. PubMed ID: 24167038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic dysfunction in Parkinson's disease.
    Picconi B; Piccoli G; Calabresi P
    Adv Exp Med Biol; 2012; 970():553-72. PubMed ID: 22351072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dopamine-dependent CB1 receptor dysfunction at corticostriatal synapses in homozygous PINK1 knockout mice.
    Madeo G; Schirinzi T; Maltese M; Martella G; Rapino C; Fezza F; Mastrangelo N; Bonsi P; Maccarrone M; Pisani A
    Neuropharmacology; 2016 Feb; 101():460-70. PubMed ID: 26498506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subtle alterations of excitatory transmission are linked to presynaptic changes in the hippocampus of PINK1-deficient mice.
    Feligioni M; Mango D; Piccinin S; Imbriani P; Iannuzzi F; Caruso A; De Angelis F; Blandini F; Mercuri NB; Pisani A; Nisticò R
    Synapse; 2016 Jun; 70(6):223-30. PubMed ID: 26850695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased glutamate transmission onto dorsal striatum spiny projection neurons in Pink1 knockout rats.
    Creed RB; Roberts RC; Farmer CB; McMahon LL; Goldberg MS
    Neurobiol Dis; 2021 Mar; 150():105246. PubMed ID: 33387634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative expression proteomics and phosphoproteomics profile of brain from PINK1 knockout mice: insights into mechanisms of familial Parkinson's disease.
    Triplett JC; Zhang Z; Sultana R; Cai J; Klein JB; Büeler H; Butterfield DA
    J Neurochem; 2015 Jun; 133(5):750-65. PubMed ID: 25626353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-Apoptotic Caspase-3 Activation Mediates Early Synaptic Dysfunction of Indirect Pathway Neurons in the Parkinsonian Striatum.
    Fieblinger T; Li C; Espa E; Cenci MA
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine induced neurodegeneration in a PINK1 model of Parkinson's disease.
    Gandhi S; Vaarmann A; Yao Z; Duchen MR; Wood NW; Abramov AY
    PLoS One; 2012; 7(5):e37564. PubMed ID: 22662171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of PINK1 causes age-dependent decrease of dopamine release and mitochondrial dysfunction.
    Zhi L; Qin Q; Muqeem T; Seifert EL; Liu W; Zheng S; Li C; Zhang H
    Neurobiol Aging; 2019 Mar; 75():1-10. PubMed ID: 30504091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. (G2019S) LRRK2 causes early-phase dysfunction of SNpc dopaminergic neurons and impairment of corticostriatal long-term depression in the PD transgenic mouse.
    Chou JS; Chen CY; Chen YL; Weng YH; Yeh TH; Lu CS; Chang YM; Wang HL
    Neurobiol Dis; 2014 Aug; 68():190-9. PubMed ID: 24830390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In search of early neuroradiological biomarkers for Parkinson's Disease: Alterations in resting state functional connectivity and gray matter microarchitecture in PINK1 -/- rats.
    Cai X; Qiao J; Knox T; Iriah S; Kulkarni P; Madularu D; Morrison T; Waszczak B; Hartner JC; Ferris CF
    Brain Res; 2019 Mar; 1706():58-67. PubMed ID: 30389398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuroprotective properties of icariin in MPTP-induced mouse model of Parkinson's disease: Involvement of PI3K/Akt and MEK/ERK signaling pathways.
    Chen WF; Wu L; Du ZR; Chen L; Xu AL; Chen XH; Teng JJ; Wong MS
    Phytomedicine; 2017 Feb; 25():93-99. PubMed ID: 28190476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of group I mGlu receptors antagonist with dopaminergic agonists strengthens the synaptic transmission at corticostriatal synapses in culture.
    Burguière A; De Bundel D; Valjent E; Roger J; Smolders I; Fagni L; Perroy J
    Neuropharmacology; 2013 Mar; 66():151-7. PubMed ID: 22465815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity.
    Centonze D; Grande C; Saulle E; Martin AB; Gubellini P; Pavón N; Pisani A; Bernardi G; Moratalla R; Calabresi P
    J Neurosci; 2003 Sep; 23(24):8506-12. PubMed ID: 13679419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations.
    Petit A; Kawarai T; Paitel E; Sanjo N; Maj M; Scheid M; Chen F; Gu Y; Hasegawa H; Salehi-Rad S; Wang L; Rogaeva E; Fraser P; Robinson B; St George-Hyslop P; Tandon A
    J Biol Chem; 2005 Oct; 280(40):34025-32. PubMed ID: 16079129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dopaminergic neuron-specific deletion of p53 gene is neuroprotective in an experimental Parkinson's disease model.
    Qi X; Davis B; Chiang YH; Filichia E; Barnett A; Greig NH; Hoffer B; Luo Y
    J Neurochem; 2016 Sep; 138(5):746-57. PubMed ID: 27317935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term oral kinetin does not protect against α-synuclein-induced neurodegeneration in rodent models of Parkinson's disease.
    Orr AL; Rutaganira FU; de Roulet D; Huang EJ; Hertz NT; Shokat KM; Nakamura K
    Neurochem Int; 2017 Oct; 109():106-116. PubMed ID: 28434973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.