These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 31336834)

  • 1. Advances and Opportunities in Passive Wake-Up Radios with Wireless Energy Harvesting for the Internet of Things Applications.
    Bello H; Xiaoping Z; Nordin R; Xin J
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31336834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. M2M Communication Assessment in Energy-Harvesting and Wake-Up Radio Assisted Scenarios Using Practical Components.
    Rinne J; Keskinen J; Berger PR; Lupo D; Valkama M
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30453515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leveraging Energy Harvesting and Wake-Up Receivers for Long-Term Wireless Sensor Networks.
    Ait Aoudia F; Gautier M; Magno M; Berder O; Benini L
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29762535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Comprehensive Review on Energy Harvesting Integration in IoT Systems from MAC Layer Perspective: Challenges and Opportunities.
    Famitafreshi G; Afaqui MS; Melià-Seguí J
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33946778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Comprehensive Survey on RF Energy Harvesting: Applications and Performance Determinants.
    Sherazi HHR; Zorbas D; O'Flynn B
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential of Wake-Up Radio-Based MAC Protocols for Implantable Body Sensor Networks (IBSN)-A Survey.
    Karuppiah Ramachandran VR; Ayele ED; Meratnia N; Havinga PJ
    Sensors (Basel); 2016 Nov; 16(12):. PubMed ID: 27916822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Challenges in Resource-Constrained IoT Devices: Energy and Communication as Critical Success Factors for Future IoT Deployment.
    Pereira F; Correia R; Pinho P; Lopes SI; Carvalho NB
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33182749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RF Energy Harvesting and Information Transmission Based on NOMA for Wireless Powered IoT Relay Systems.
    Rauniyar A; Engelstad P; Østerbø ON
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30262773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How Can Wake-up Radio Reduce LoRa Downlink Latency for Energy Harvesting Sensor Nodes?
    Djidi NEH; Gautier M; Courtay A; Berder O; Magno M
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33499066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-Demand LoRa: Asynchronous TDMA for Energy Efficient and Low Latency Communication in IoT.
    Piyare R; Murphy AL; Magno M; Benini L
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30388782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies and Techniques for Powering Wireless Sensor Nodes through Energy Harvesting and Wireless Power Transfer.
    La Rosa R; Livreri P; Trigona C; Di Donato L; Sorbello G
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31212839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Review of IoT Sensing Applications and Challenges Using RFID and Wireless Sensor Networks.
    Landaluce H; Arjona L; Perallos A; Falcone F; Angulo I; Muralter F
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32354063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radio Frequency Identification and Sensing Techniques and Their Applications-A Review of the State-of-the-Art.
    Cui L; Zhang Z; Gao N; Meng Z; Li Z
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31533321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-Demand Sensor Node Wake-Up Using Solar Panels and Visible Light Communication.
    Carrascal C; Demirkol I; Paradells J
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 27011190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bandwidth-Based Wake-Up Radio Solution through IEEE 802.11 Technology.
    Lopez-Aguilera E; Garcia-Villegas E
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RF Energy Harvesting Wireless Communications: RF Environment, Device Hardware and Practical Issues.
    Luo Y; Pu L; Wang G; Zhao Y
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31288456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radio frequency identification enabled wireless sensing for intelligent food logistics.
    Zou Z; Chen Q; Uysal I; Zheng L
    Philos Trans A Math Phys Eng Sci; 2014 Jun; 372(2017):20130313. PubMed ID: 24797140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wireless Energy Transfer Powered Wireless Sensor Node for Green IoT: Design, Implementation and Evaluation.
    Janhunen J; Mikhaylov K; Petäjäjärvi J; Sonkki M
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30597860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy-Aware System Design for Autonomous Wireless Sensor Nodes: A Comprehensive Review.
    Kanoun O; Bradai S; Khriji S; Bouattour G; El Houssaini D; Ben Ammar M; Naifar S; Bouhamed A; Derbel F; Viehweger C
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33466681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance Analysis of Addressing Mechanisms in Inter-Operable IoT Device with Low-Power Wake-Up Radio.
    Song T; Kim T
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31766524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.