BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31336835)

  • 1. Structure Determination of Er Doped Ti-Al-Nb Alloy by Neutron Diffraction Analysis.
    Ke Y; Tao J; Duan H
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31336835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new titanium based alloy Ti-27Nb-13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial.
    Mendes MW; Ágreda CG; Bressiani AH; Bressiani JC
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():671-7. PubMed ID: 27040264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deformation behavior of metastable β-type Ti-25Nb-2Mo-4Sn alloy for biomedical applications.
    Guo S; Meng QK; Cheng XN; Zhao XQ
    J Mech Behav Biomed Mater; 2014 Oct; 38():26-32. PubMed ID: 25011015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructure and mechanical properties of Nb15Al10Ti alloy produced by mechanical alloying and high temperature processing.
    Rozmus M; Blicharski M; Dymek S
    J Microsc; 2010 Mar; 237(3):501-5. PubMed ID: 20500425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Ti-Nb-Zr alloys with high elastic admissible strain for temporary orthopedic devices.
    Ozan S; Lin J; Li Y; Ipek R; Wen C
    Acta Biomater; 2015 Jul; 20():176-187. PubMed ID: 25818950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of the Loading Conditions and the Building Directions on the Mechanical Behavior of Biomedical
    Ben Boubaker H; Laheurte P; Le Coz G; Biriaie SS; Didier P; Lohmuller P; Moufki A
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ elaboration of a binary Ti-26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders.
    Fischer M; Joguet D; Robin G; Peltier L; Laheurte P
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():852-9. PubMed ID: 26952492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy.
    Stoica GM; Stoica AD; Miller MK; Ma D
    Nat Commun; 2014 Oct; 5():5178. PubMed ID: 25300893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Omega Phase Formation in Ti-3wt.%Nb Alloy Induced by High-Pressure Torsion.
    Korneva A; Straumal B; Kilmametov A; Gornakova A; Wierzbicka-Miernik A; Lityńska-Dobrzyńska L; Chulist R; Gondek Ł; Cios G; Zięba P
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33925626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of Microstructural Features and Prediction of Mechanical Properties of a Dual-Phase Ti-6Al-4V Alloy.
    Yang D; Liu Z
    Materials (Basel); 2016 Jul; 9(8):. PubMed ID: 28773751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Nb on the β→α″ martensitic phase transformation and properties of the newly designed Ti-Fe-Nb alloys.
    Ehtemam-Haghighi S; Liu Y; Cao G; Zhang LC
    Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():503-510. PubMed ID: 26706557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of Copper Alloying in a TNTZ-Cu
    Fowler L; Janse Van Vuuren A; Goosen W; Engqvist H; Öhman-Mägi C; Norgren S
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31717395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructures and mechanical properties of in situ TiC-β-Ti-Nb composites with ultrafine grains fabricated by high-pressure sintering.
    Liu Z; Zhang DC; Gong LJ; Lin JG; Wen C
    Sci Rep; 2018 Jun; 8(1):9496. PubMed ID: 29934506
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Heldmann A; Hofmann M; Hoelzel M
    J Appl Crystallogr; 2022 Jun; 55(Pt 3):656-662. PubMed ID: 35719297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversion of a Parent {130}⟨310⟩_{α^{''}} Martensitic Twinning System at the Origin of {332}⟨113⟩_{β} Twins Observed in Metastable β Titanium Alloys.
    Castany P; Yang Y; Bertrand E; Gloriant T
    Phys Rev Lett; 2016 Dec; 117(24):245501. PubMed ID: 28009177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of mechanical and microstructural properties of constrained groove pressed nitinol shape memory alloy for biomedical applications.
    Bhardwaj A; Gupta AK; Padisala SK; Poluri K
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():730-742. PubMed ID: 31147045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Heat Treatments on Microstructure and Mechanical Properties of Ti⁻26Nb Alloy Elaborated In Situ by Laser Additive Manufacturing with Ti and Nb Mixed Powder.
    Wei J; Sun H; Zhang D; Gong L; Lin J; Wen C
    Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30585185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plastic deformation behaviour of single-crystalline martensite of Ti-Nb shape memory alloy.
    Tahara M; Okano N; Inamura T; Hosoda H
    Sci Rep; 2017 Nov; 7(1):15715. PubMed ID: 29146921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical behaviour of pressed and sintered CP Ti and Ti-6Al-7Nb alloy obtained from master alloy addition powder.
    Bolzoni L; Weissgaerber T; Kieback B; Ruiz-Navas EM; Gordo E
    J Mech Behav Biomed Mater; 2013 Apr; 20():149-61. PubMed ID: 23455171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deformation mechanism and mechanical properties of a thermomechanically processed β Ti-28Nb-35.4Zr alloy.
    Ozan S; Lin J; Li Y; Zhang Y; Munir K; Jiang H; Wen C
    J Mech Behav Biomed Mater; 2018 Feb; 78():224-234. PubMed ID: 29175491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.