These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31337058)

  • 1. Deep Multi-Layer Perception Based Terrain Classification for Planetary Exploration Rovers.
    Bai C; Guo J; Guo L; Song J
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31337058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncertainty-Based Vibration/Gyro Composite Planetary Terrain Mapping.
    Bai C; Guo J
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31200583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibration-Based Recognition of Wheel-Terrain Interaction for Terramechanics Model Selection and Terrain Parameter Identification for Lugged-Wheel Planetary Rovers.
    Lv F; Li N; Gao H; Ding L; Deng Z; Yu H; Liu Z
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Accurate Visual Method of Mars Terrain Classification for Rovers Based on Novel Image Features.
    Lv F; Li N; Liu C; Gao H; Ding L; Deng Z; Liu G
    Entropy (Basel); 2022 Sep; 24(9):. PubMed ID: 36141190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semantic Terrain Segmentation in the Navigation Vision of Planetary Rovers-A Systematic Literature Review.
    Kuang B; Gu C; Rana ZA; Zhao Y; Sun S; Nnabuife SG
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366089
    [No Abstract]   [Full Text] [Related]  

  • 6. Comparative Study of Different Methods in Vibration-Based Terrain Classification for Wheeled Robots with Shock Absorbers.
    Mei M; Chang J; Li Y; Li Z; Li X; Lv W
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30845726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual SLAM-Based Robotic Mapping Method for Planetary Construction.
    Hong S; Bangunharcana A; Park JM; Choi M; Shin HS
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-coupled control for all-terrain rovers.
    Reina G
    Sensors (Basel); 2013 Jan; 13(1):785-800. PubMed ID: 23299625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards Camera-LIDAR Fusion-Based Terrain Modelling for Planetary Surfaces: Review and Analysis.
    Shaukat A; Blacker PC; Spiteri C; Gao Y
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27879625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning-Based End-to-End Path Planning for Lunar Rovers with Safety Constraints.
    Yu X; Wang P; Zhang Z
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33504073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards terrain interaction prediction for bioinspired planetary exploration rovers.
    Yeomans B; Saaj CM
    Bioinspir Biomim; 2014 Mar; 9(1):016009. PubMed ID: 24434658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slip-Based Autonomous ZUPT through Gaussian Process to Improve Planetary Rover Localization.
    Kilic C; Ohi N; Gu Y; Gross JN
    IEEE Robot Autom Lett; 2021 Jul; 6(3):4782-4789. PubMed ID: 33969183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency-Temporal Disagreement Adaptation for Robotic Terrain Classification via Vibration in a Dynamic Environment.
    Cheng C; Chang J; Lv W; Wu Y; Li K; Li Z; Yuan C; Ma S
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33207829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-sensor dynamic scheduling for defending UAV swarms with Fresnel zone under complex terrain.
    Xing Z; Hu S; Ding R; Yan T; Xiong X; Wei X
    ISA Trans; 2024 Oct; 153():57-69. PubMed ID: 39127555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wishart Deep Stacking Network for Fast POLSAR Image Classification.
    Licheng Jiao ; Fang Liu
    IEEE Trans Image Process; 2016 Jul; 25(7):3273-3286. PubMed ID: 28113713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Path-following control of wheeled planetary exploration robots moving on deformable rough terrain.
    Ding L; Gao HB; Deng ZQ; Li Z; Xia KR; Duan GR
    ScientificWorldJournal; 2014; 2014():793526. PubMed ID: 24790582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-stage classification method oriented to aerial image based on low-rank recovery and multi-feature fusion sparse representation.
    Ma X; Cheng Y; Hao S
    Appl Opt; 2016 Dec; 55(35):10038-10044. PubMed ID: 27958408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of slip rate-dependent traversability for path planning of wheeled mobile robot in sandy terrain.
    Sakayori G; Ishigami G
    Front Robot AI; 2024; 11():1320261. PubMed ID: 38332951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Offline and Real-Time Implementation of a Terrain Classification Pipeline for Pushrim-Activated Power-Assisted Wheelchairs.
    Khalili M; Ta K; Van der Loos HFM; Borisoff JF
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4542-4545. PubMed ID: 34892227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning-Based Real-Time Auto Classification of Smartphone Measured Bridge Vibration Data.
    Shrestha A; Dang J
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32397510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.