These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31337078)

  • 1. Dark-Field Scattering and Local SERS Mapping from Plasmonic Aluminum Bowtie Antenna Array.
    Dao TD; Hoang CV; Nishio N; Yamamoto N; Ohi A; Nabatame T; Aono M; Nagao T
    Micromachines (Basel); 2019 Jul; 10(7):. PubMed ID: 31337078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailored Emission Properties of ZnTe/ZnTe:O/ZnO Core-Shell Nanowires Coupled with an Al Plasmonic Bowtie Antenna Array.
    Nie KY; Tu X; Li J; Chen X; Ren FF; Zhang GG; Kang L; Gu S; Zhang R; Wu P; Zheng Y; Tan HH; Jagadish C; Ye J
    ACS Nano; 2018 Jul; 12(7):7327-7334. PubMed ID: 29894159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bridged-bowtie and cross bridged-bowtie nanohole arrays as SERS substrates with hotspot tunability and multi-wavelength SERS response.
    Gupta N; Dhawan A
    Opt Express; 2018 Jul; 26(14):17899-17915. PubMed ID: 30114073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-field enhancement in oxidized close gap aluminum dimers.
    Simeone D; Tasco V; Esposito M; Manoccio M; Lorenzo D; Scuderi M; Luca A; Cabrini S; Passaseo A; Cuscunà M
    Nanotechnology; 2021 Jan; 32(2):025305. PubMed ID: 33089826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering the optical response of plasmonic nanoantennas.
    Fischer H; Martin OJ
    Opt Express; 2008 Jun; 16(12):9144-54. PubMed ID: 18545626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uniform Periodic Bowtie SERS Substrate with Narrow Nanogaps Obtained by Monitored Pulsed Electrodeposition.
    Yao X; Jiang S; Luo S; Liu BW; Huang TX; Hu S; Zhu J; Wang X; Ren B
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36505-36512. PubMed ID: 32686400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical Study on Symmetry-Broken Plasmonic Optical Tweezers for Heterogeneous Noble-Metal-Based Nano-Bowtie Antennas.
    Du G; Lu Y; Lankanath D; Hou X; Chen F
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33803040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of bow-tie plasmonic nano-antennas on tapered fibers.
    Khaleque A; Mironov EG; Osório JH; Li Z; Cordeiro CMB; Liu L; Franco MAR; Liow JL; Hattori HT
    Opt Express; 2017 Apr; 25(8):8986-8996. PubMed ID: 28437972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sierpiński fractal plasmonic antenna: a fractal abstraction of the plasmonic bowtie antenna.
    Sederberg S; Elezzabi AY
    Opt Express; 2011 May; 19(11):10456-61. PubMed ID: 21643300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae.
    Dodson S; Haggui M; Bachelot R; Plain J; Li S; Xiong Q
    J Phys Chem Lett; 2013 Feb; 4(3):496-501. PubMed ID: 26281746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering.
    Zheng P; Cushing SK; Suri S; Wu N
    Phys Chem Chem Phys; 2015 Sep; 17(33):21211-9. PubMed ID: 25586930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy.
    Hatab NA; Hsueh CH; Gaddis AL; Retterer ST; Li JH; Eres G; Zhang Z; Gu B
    Nano Lett; 2010 Dec; 10(12):4952-5. PubMed ID: 21090585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation on the second part of the electromagnetic SERS enhancement and resulting fabrication strategies of anisotropic plasmonic arrays.
    Cialla D; Petschulat J; Hübner U; Schneidewind H; Zeisberger M; Mattheis R; Pertsch T; Schmitt M; Möller R; Popp J
    Chemphyschem; 2010 Jun; 11(9):1918-24. PubMed ID: 20401896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic dimer antennas for surface enhanced Raman scattering.
    Höflich K; Becker M; Leuchs G; Christiansen S
    Nanotechnology; 2012 May; 23(18):185303. PubMed ID: 22498764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evanescent field excited plasmonic nano-antenna for improving SERS signal.
    Gu Y; Li H; Xu S; Liu Y; Xu W
    Phys Chem Chem Phys; 2013 Oct; 15(37):15494-8. PubMed ID: 23942757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA Origami Directed Assembly of Gold Bowtie Nanoantennas for Single-Molecule Surface-Enhanced Raman Scattering.
    Zhan P; Wen T; Wang ZG; He Y; Shi J; Wang T; Liu X; Lu G; Ding B
    Angew Chem Int Ed Engl; 2018 Mar; 57(11):2846-2850. PubMed ID: 29377456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unconventional plasmonic sensitization of graphene in mid-infrared.
    Paria D; Vadakkumbatt V; Ravindra P; Avasthi S; Ghosh A
    Nanotechnology; 2021 May; 32(31):. PubMed ID: 33873164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic nanoantenna arrays for surface-enhanced Raman spectroscopy of lipid molecules embedded in a bilayer membrane.
    Kühler P; Weber M; Lohmüller T
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):8947-52. PubMed ID: 24896979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D aluminum/silver hierarchical nanostructure with large areas of dense hot spots for surface-enhanced raman scattering.
    Zhao N; Li H; Xie Y; Feng Z; Wang Z; Yang Z; Yan X; Wang W; Tian C; Yu H
    Electrophoresis; 2019 Dec; 40(23-24):3123-3131. PubMed ID: 31576580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic Resonance Enhanced Polarization-Sensitive Photodetection by Black Phosphorus in Near Infrared.
    Venuthurumilli PK; Ye PD; Xu X
    ACS Nano; 2018 May; 12(5):4861-4867. PubMed ID: 29684270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.