BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 31337107)

  • 1. An EMG Patch for the Real-Time Monitoring of Muscle-Fatigue Conditions During Exercise.
    Liu SH; Lin CB; Chen Y; Chen W; Huang TS; Hsu CY
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31337107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comparative Study of EMG Indices in Muscle Fatigue Evaluation Based on Grey Relational Analysis during All-Out Cycling Exercise.
    Wang L; Wang Y; Ma A; Ma G; Ye Y; Li R; Lu T
    Biomed Res Int; 2018; 2018():9341215. PubMed ID: 29850588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exercise muscle fatigue detection system implementation via wireless surface electromyography and empirical mode decomposition.
    Chang KM; Liu SH; Wang JJ; Cheng DC
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1001-4. PubMed ID: 24109859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of muscle fatigue during biking.
    Knaflitz M; Molinari F
    IEEE Trans Neural Syst Rehabil Eng; 2003 Mar; 11(1):17-23. PubMed ID: 12797721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EMG amplitude and frequency parameters of muscular activity: effect of resistance training based on electromyographic fatigue threshold.
    Oliveira Ade S; Gonçalves M
    J Electromyogr Kinesiol; 2009 Apr; 19(2):295-303. PubMed ID: 17904865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Issues in relation to the repeatability of and correlation between EMG and Borg scale assessments of neck muscle fatigue.
    Strimpakos N; Georgios G; Eleni K; Vasilios K; Jacqueline O
    J Electromyogr Kinesiol; 2005 Oct; 15(5):452-65. PubMed ID: 15935957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A real-time fatigue monitoring and analysis system for lower extremity muscles with cycling movement.
    Chen SW; Liaw JW; Chan HL; Chang YJ; Ku CH
    Sensors (Basel); 2014 Jul; 14(7):12410-24. PubMed ID: 25014101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle fatigue monitoring using wavelet decomposition of surface EMG.
    Xiao S; Leung SC
    Biomed Sci Instrum; 1997; 34():147-52. PubMed ID: 9603029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The potential use of spectral electromyographic fatigue as a screening and outcome monitoring tool of sarcopenic back muscle alterations.
    Kienbacher T; Habenicht R; Starek C; Mair P; Wolf M; Paul B; Riegler S; Kollmitzer J; Ebenbichler G
    J Neuroeng Rehabil; 2014 Jul; 11():106. PubMed ID: 24985941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of average muscle fiber conduction velocity from surface EMG signals during fatiguing dynamic contractions.
    Farina D; Pozzo M; Merlo E; Bottin A; Merletti R
    IEEE Trans Biomed Eng; 2004 Aug; 51(8):1383-93. PubMed ID: 15311823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliability of EMG time-frequency measures of fatigue during repetitive lifting.
    Ebenbichler GR; Bonato P; Roy SH; Lehr S; Posch M; Kollmitzer J; Della Croce U
    Med Sci Sports Exerc; 2002 Aug; 34(8):1316-23. PubMed ID: 12165687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The progression of muscle fatigue during exercise estimation with the aid of high-frequency component parameters derived from ensemble empirical mode decomposition.
    Liu SH; Chang KM; Cheng DC
    IEEE J Biomed Health Inform; 2014 Sep; 18(5):1647-58. PubMed ID: 25192574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle Fatigue Assessment During Cycle Ergometer Exercise Using Principal Component Analysis of Electromyogram Power Spectra.
    Jesus IR; Mello RG; Nadal J
    J Appl Biomech; 2016 Dec; 32(6):593-598. PubMed ID: 27400456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of contraction force and speed on muscle fiber conduction velocity during dynamic voluntary exercise.
    Masuda T; Kizuka T; Zhe JY; Yamada H; Saitou K; Sadoyama T; Okada M
    J Electromyogr Kinesiol; 2001 Apr; 11(2):85-94. PubMed ID: 11228422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sock-Type Wearable Sensor for Estimating Lower Leg Muscle Activity Using Distal EMG Signals.
    Isezaki T; Kadone H; Niijima A; Aoki R; Watanabe T; Kimura T; Suzuki K
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31027302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, development and testing of a low-cost sEMG system and its use in recording muscle activity in human gait.
    Supuk TG; Skelin AK; Cic M
    Sensors (Basel); 2014 May; 14(5):8235-58. PubMed ID: 24811078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle fatigue detection in EMG using time-frequency methods, ICA and neural networks.
    Subasi A; Kiymik MK
    J Med Syst; 2010 Aug; 34(4):777-85. PubMed ID: 20703933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new EMG frequency-based fatigue threshold test.
    Hendrix CR; Housh TJ; Johnson GO; Mielke M; Camic CL; Zuniga JM; Schmidt RJ
    J Neurosci Methods; 2009 Jun; 181(1):45-51. PubMed ID: 19394361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human activity monitoring system based on wearable sEMG and accelerometer wireless sensor nodes.
    Biagetti G; Crippa P; Falaschetti L; Orcioni S; Turchetti C
    Biomed Eng Online; 2018 Nov; 17(Suppl 1):132. PubMed ID: 30458783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface EMG mapping of the human trapezius muscle: the topography of monopolar and bipolar surface EMG amplitude and spectrum parameters at varied forces and in fatigue.
    Kleine BU; Schumann NP; Stegeman DF; Scholle HC
    Clin Neurophysiol; 2000 Apr; 111(4):686-93. PubMed ID: 10727920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.