These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31337137)

  • 41. Preparation and tensile conductivity of carbon nanotube/polyurethane nanofiber conductive films based on the centrifugal spinning method.
    Luo W; Mei SQ; Liu T; Yang LY; Fan LL
    Nanotechnology; 2022 Jan; 33(13):. PubMed ID: 34933287
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Formation of Highly Pure and Patterned Carbon Nanotube Films on a Variety of Substrates by a Wet Process Based on Light-Induced Dispersibility Switching.
    Jintoku H; Sato T; Nakazumi T; Matsuzawa Y; Kihara H; Yoshida M
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30805-30811. PubMed ID: 28834432
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanically Robust and Repairable Superhydrophobic Zinc Coating via a Fast and Facile Method for Corrosion Resisting.
    Ou J; Zhu W; Xie C; Xue M
    Materials (Basel); 2019 May; 12(11):. PubMed ID: 31159300
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Superhydrophobic, mechanically durable coatings for controllable light and magnetism driven actuators.
    Wu H; Luo J; Huang X; Wang L; Guo Z; Liang J; Zhang S; Xue H; Gao J
    J Colloid Interface Sci; 2021 Dec; 603():282-290. PubMed ID: 34186405
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Robust Fluorine-Free and Self-Healing Superhydrophobic Coatings by H
    Lahiri SK; Zhang P; Zhang C; Liu L
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):10262-10275. PubMed ID: 30761888
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Vapor-Liquid Sol-Gel Approach to Fabricating Highly Durable and Robust Superhydrophobic Polydimethylsiloxane@Silica Surface on Polyester Textile for Oil-Water Separation.
    Su X; Li H; Lai X; Zhang L; Wang J; Liao X; Zeng X
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):28089-28099. PubMed ID: 28758736
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mussel-Inspired Durable TiO
    He Z; Wu H; Shi Z; Gao X; Sun Y; Liu X
    Langmuir; 2022 May; 38(19):6086-6098. PubMed ID: 35504860
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fabrication of robust superhydrophobic magnetic multifunctional coatings and liquid marbles.
    Wang B; Liu X; Miao X; Deng W
    J Colloid Interface Sci; 2022 Dec; 628(Pt A):619-630. PubMed ID: 35940146
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recyclable and electrically conducting carbon nanotube composite films.
    Zou G; Jain M; Yang H; Zhang Y; Williams D; Jia Q
    Nanoscale; 2010 Mar; 2(3):418-22. PubMed ID: 20644826
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Preparation of Iron Ore Tailings-Based Superhydrophobic Coatings.
    Su Z; Tang Q; Zhao W; Liang C; Liu Q; Wang F; Duan X; Liang J
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744293
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Eco-Friendly Fabrication of Transparent Superhydrophobic Coating with Excellent Mechanical Robustness, Chemical Stability, and Long-Term Outdoor Durability.
    Liu Y; Tan X; Li X; Xiao T; Jiang L; Nie S; Song J; Chen X
    Langmuir; 2022 Oct; 38(42):12881-12893. PubMed ID: 36217763
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The fabrication of mechanically durable and stretchable superhydrophobic PDMS/SiO
    Xue CH; Tian QQ; Jia ST; Zhao LL; Ding YR; Li HG; An QF
    RSC Adv; 2020 May; 10(33):19466-19473. PubMed ID: 35515442
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thermally Reduced Graphene Oxide/Carbon Nanotube Composite Films for Thermal Packaging Applications.
    Yuan GJ; Xie JF; Li HH; Shan B; Zhang XX; Liu J; Li L; Tian YZ
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 32284495
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reinforced carbon nanotubes as electrically conducting and flexible films for space applications.
    Atar N; Grossman E; Gouzman I; Bolker A; Hanein Y
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20400-7. PubMed ID: 25366559
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Flexible superhydrophobic surfaces with condensate microdrop self-propelling functionality based on carbon nanotube films.
    Gong X; Xu J; Yong Z; Ramakrishna S
    Nanoscale Adv; 2020 Sep; 2(9):4147-4152. PubMed ID: 36132777
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cross-Linked Organic-Inorganic Hybrid Composite Films for One-Step Fabrication of Robust Superhydrophobic Surfaces.
    Kim DC; Ha YG
    J Nanosci Nanotechnol; 2020 Feb; 20(2):1028-1032. PubMed ID: 31383101
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Polymer single crystal-decorated superhydrophobic buckypaper with controlled wetting and conductivity.
    Laird ED; Wang W; Cheng S; Li B; Presser V; Dyatkin B; Gogotsi Y; Li CY
    ACS Nano; 2012 Feb; 6(2):1204-13. PubMed ID: 22243213
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Robust superhydrophobic attapulgite meshes for effective separation of water-in-oil emulsions.
    Li H; Zhu G; Shen Y; Han Z; Zhang J; Li J
    J Colloid Interface Sci; 2019 Dec; 557():84-93. PubMed ID: 31514096
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Superhydrophobic Copper Materials with Excellent Durability and Regeneration Based on Self-Similarity in Structure and Composition.
    Bai W; Zhou J; Shi X; Wang H; Liu Y; Feng L
    J Nanosci Nanotechnol; 2021 Dec; 21(12):6088-6093. PubMed ID: 34229808
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hardness and wear resistance of carbon nanotube reinforced aluminum-copper matrix composites.
    Nam DH; Kim JH; Cha SI; Jung SI; Lee JK; Park HM; Park HD; Hong H
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9134-8. PubMed ID: 25971024
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.