BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 31337271)

  • 41. Histidine phosphorylation relieves copper inhibition in the mammalian potassium channel KCa3.1.
    Srivastava S; Panda S; Li Z; Fuhs SR; Hunter T; Thiele DJ; Hubbard SR; Skolnik EY
    Elife; 2016 Aug; 5():. PubMed ID: 27542194
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Calcium-gated K
    Tarasov MV; Bystrova MF; Kotova PD; Rogachevskaja OA; Sysoeva VY; Kolesnikov SS
    Pflugers Arch; 2017 Feb; 469(2):349-362. PubMed ID: 28028617
    [TBL] [Abstract][Full Text] [Related]  

  • 43. SKA-31, an activator of endothelial Ca
    Khaddaj-Mallat R; Mathew John C; Braun AP
    Eur J Pharmacol; 2018 Jul; 831():60-67. PubMed ID: 29753043
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Small- and intermediate-conductance Ca2+-activated K+ channels directly control agonist-evoked nitric oxide synthesis in human vascular endothelial cells.
    Sheng JZ; Braun AP
    Am J Physiol Cell Physiol; 2007 Jul; 293(1):C458-67. PubMed ID: 17459950
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The relationship between functional inhibition and binding for K(Ca)2 channel blockers.
    Benton DC; Garbarg M; Moss GW
    PLoS One; 2013; 8(9):e73328. PubMed ID: 24039913
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Erectile Dysfunction and Altered Contribution of KCa1.1 and KCa2.3 Channels in the Penile Tissue of Type-2 Diabetic db/db Mice.
    Comerma-Steffensen S; Prat-Duran J; Mogensen S; Fais R; Pinilla E; Simonsen U
    J Sex Med; 2022 May; 19(5):697-710. PubMed ID: 35321830
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Endothelial SK3 channel-associated Ca2+ microdomains modulate blood pressure.
    Yap FC; Weber DS; Taylor MS; Townsley MI; Comer BS; Maylie J; Adelman JP; Lin MT
    Am J Physiol Heart Circ Physiol; 2016 May; 310(9):H1151-63. PubMed ID: 26945080
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Calcium-dependent potassium channels control proliferation of cardiac progenitor cells and bone marrow-derived mesenchymal stem cells.
    Vigneault P; Naud P; Qi X; Xiao J; Villeneuve L; Davis DR; Nattel S
    J Physiol; 2018 Jun; 596(12):2359-2379. PubMed ID: 29574723
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Ca2+-activated K+ channel of intermediate conductance:a possible target for immune suppression.
    Jensen BS; Hertz M; Christophersen P; Madsen LS
    Expert Opin Ther Targets; 2002 Dec; 6(6):623-36. PubMed ID: 12472376
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of calcium-activated potassium channel modulators on afterhyperpolarizing potentials in identified motor and mechanosensory neurons of the medicinal leech.
    Angstadt JD; Rebel MI; Connolly MK
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2021 Jan; 207(1):69-85. PubMed ID: 33483833
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of KCa3.1 Channels in CNS Diseases: A Concise Review.
    Sugunan S; Nampoothiri SS; Garg T; Krishnamurthy RG
    CNS Neurol Disord Drug Targets; 2016; 15(10):1299-1305. PubMed ID: 27549144
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Crystal structure of the C-terminal four-helix bundle of the potassium channel KCa3.1.
    Ji T; Corbalán-García S; Hubbard SR
    PLoS One; 2018; 13(6):e0199942. PubMed ID: 29953543
    [TBL] [Abstract][Full Text] [Related]  

  • 53. ER stress mediates homocysteine-induced endothelial dysfunction: Modulation of IKCa and SKCa channels.
    Wang XC; Sun WT; Yu CM; Pun SH; Underwood MJ; He GW; Yang Q
    Atherosclerosis; 2015 Sep; 242(1):191-8. PubMed ID: 26204495
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neuronal expression of the intermediate conductance calcium-activated potassium channel KCa3.1 in the mammalian central nervous system.
    Turner RW; Kruskic M; Teves M; Scheidl-Yee T; Hameed S; Zamponi GW
    Pflugers Arch; 2015 Feb; 467(2):311-28. PubMed ID: 24797146
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Positive feedback regulation of agonist-stimulated endothelial Ca2+ dynamics by KCa3.1 channels in mouse mesenteric arteries.
    Qian X; Francis M; Köhler R; Solodushko V; Lin M; Taylor MS
    Arterioscler Thromb Vasc Biol; 2014 Jan; 34(1):127-35. PubMed ID: 24177326
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lisinopril alters contribution of nitric oxide and K(Ca) channels to vasodilatation in small mesenteric arteries of spontaneously hypertensive rats.
    Albarwani S; Al-Siyabi S; Al-Husseini I; Al-Ismail A; Al-Lawati I; Al-Bahrani I; Tanira MO
    Physiol Res; 2015; 64(1):39-49. PubMed ID: 25194131
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Are there superagonists for calcium-activated potassium channels?
    Brown BM; Shim H; Wulff H
    Channels (Austin); 2017 Nov; 11(6):504-506. PubMed ID: 28876978
    [No Abstract]   [Full Text] [Related]  

  • 58. Type 2 diabetes: increased expression and contribution of IKCa channels to vasodilation in small mesenteric arteries of ZDF rats.
    Schach C; Resch M; Schmid PM; Riegger GA; Endemann DH
    Am J Physiol Heart Circ Physiol; 2014 Oct; 307(8):H1093-102. PubMed ID: 25128173
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Single-nucleotide polymorphisms in vascular Ca2+-activated K+-channel genes and cardiovascular disease.
    Köhler R
    Pflugers Arch; 2010 Jul; 460(2):343-51. PubMed ID: 20043229
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The combined activation of K
    Pillozzi S; D'Amico M; Bartoli G; Gasparoli L; Petroni G; Crociani O; Marzo T; Guerriero A; Messori L; Severi M; Udisti R; Wulff H; Chandy KG; Becchetti A; Arcangeli A
    Br J Cancer; 2018 Jan; 118(2):200-212. PubMed ID: 29161243
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.