BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 31337708)

  • 1. Ruminococcin C, an anti-clostridial sactipeptide produced by a prominent member of the human microbiota
    Balty C; Guillot A; Fradale L; Brewee C; Boulay M; Kubiak X; Benjdia A; Berteau O
    J Biol Chem; 2019 Oct; 294(40):14512-14525. PubMed ID: 31337708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of the sactipeptide Ruminococcin C by the human microbiome: Mechanistic insights into thioether bond formation by radical SAM enzymes.
    Balty C; Guillot A; Fradale L; Brewee C; Lefranc B; Herrero C; Sandström C; Leprince J; Berteau O; Benjdia A
    J Biol Chem; 2020 Dec; 295(49):16665-16677. PubMed ID: 32972973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Multifunctional Sactipeptide Ruminococcin C1 Displays Potent Antibacterial Activity In Vivo as Well as Other Beneficial Properties for Human Health.
    Roblin C; Chiumento S; Jacqueline C; Pinloche E; Nicoletti C; Olleik H; Courvoisier-Dezord E; Amouric A; Basset C; Dru L; Ollivier M; Bogey-Lambert A; Vidal N; Atta M; Maresca M; Devillard E; Duarte V; Perrier J; Lafond M
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33806791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and distribution of the gene cluster encoding RumC, an anti-Clostridium perfringens bacteriocin produced in the gut.
    Pujol A; Crost EH; Simon G; Barbe V; Vallenet D; Gomez A; Fons M
    FEMS Microbiol Ecol; 2011 Nov; 78(2):405-15. PubMed ID: 22092178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ruminococcin C, a new anti-Clostridium perfringens bacteriocin produced in the gut by the commensal bacterium Ruminococcus gnavus E1.
    Crost EH; Ajandouz EH; Villard C; Geraert PA; Puigserver A; Fons M
    Biochimie; 2011 Sep; 93(9):1487-94. PubMed ID: 21586310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The unusual structure of Ruminococcin C1 antimicrobial peptide confers clinical properties.
    Roblin C; Chiumento S; Bornet O; Nouailler M; Müller CS; Jeannot K; Basset C; Kieffer-Jaquinod S; Couté Y; Torelli S; Le Pape L; Schünemann V; Olleik H; De La Villeon B; Sockeel P; Di Pasquale E; Nicoletti C; Vidal N; Poljak L; Iranzo O; Giardina T; Fons M; Devillard E; Polard P; Maresca M; Perrier J; Atta M; Guerlesquin F; Lafond M; Duarte V
    Proc Natl Acad Sci U S A; 2020 Aug; 117(32):19168-19177. PubMed ID: 32719135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ruminococcin C, a promising antibiotic produced by a human gut symbiont.
    Chiumento S; Roblin C; Kieffer-Jaquinod S; Tachon S; Leprètre C; Basset C; Aditiyarini D; Olleik H; Nicoletti C; Bornet O; Iranzo O; Maresca M; Hardré R; Fons M; Giardina T; Devillard E; Guerlesquin F; Couté Y; Atta M; Perrier J; Lafond M; Duarte V
    Sci Adv; 2019 Sep; 5(9):eaaw9969. PubMed ID: 31579822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinformatic Mapping of Radical S-Adenosylmethionine-Dependent Ribosomally Synthesized and Post-Translationally Modified Peptides Identifies New Cα, Cβ, and Cγ-Linked Thioether-Containing Peptides.
    Hudson GA; Burkhart BJ; DiCaprio AJ; Schwalen CJ; Kille B; Pogorelov TV; Mitchell DA
    J Am Chem Soc; 2019 May; 141(20):8228-8238. PubMed ID: 31059252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processing and Structure of the Lantibiotic Peptide Nso From the Human Gut Bacterium Blautia obeum A2-162 analysed by Mass Spectrometry.
    Gherghisan-Filip C; Saalbach G; Hatziioanou D; Narbad A; Mayer MJ
    Sci Rep; 2018 Jul; 8(1):10077. PubMed ID: 29973605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterologous Biosynthesis, Modifications and Structural Characterization of Ruminococcin-A, a Lanthipeptide From the Gut Bacterium
    Ongey EL; Giessmann RT; Fons M; Rappsilber J; Adrian L; Neubauer P
    Front Microbiol; 2018; 9():1688. PubMed ID: 30093894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The PqqD homologous domain of the radical SAM enzyme ThnB is required for thioether bond formation during thurincin H maturation.
    Wieckowski BM; Hegemann JD; Mielcarek A; Boss L; Burghaus O; Marahiel MA
    FEBS Lett; 2015 Jul; 589(15):1802-6. PubMed ID: 26026269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Insights into Thioether Bond Formation in the Biosynthesis of Sactipeptides.
    Grove TL; Himes PM; Hwang S; Yumerefendi H; Bonanno JB; Kuhlman B; Almo SC; Bowers AA
    J Am Chem Soc; 2017 Aug; 139(34):11734-11744. PubMed ID: 28704043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic and functional aspects of the Ruminococcin C sactipeptide isoforms.
    Shamseddine L; Roblin C; Veyrier I; Basset C; De Macedo L; Boyeldieu A; Maresca M; Nicoletti C; Brasseur G; Kieffer-Jaquinod S; Courvoisier-Dezord É; Amouric A; Carpentier P; Campo N; Bergé M; Polard P; Perrier J; Duarte V; Lafond M
    iScience; 2023 Sep; 26(9):107563. PubMed ID: 37664601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expansion of RiPP biosynthetic space through integration of pan-genomics and machine learning uncovers a novel class of lanthipeptides.
    Kloosterman AM; Cimermancic P; Elsayed SS; Du C; Hadjithomas M; Donia MS; Fischbach MA; van Wezel GP; Medema MH
    PLoS Biol; 2020 Dec; 18(12):e3001026. PubMed ID: 33351797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macrocyclization and Backbone Modification in RiPP Biosynthesis.
    Lee H; van der Donk WA
    Annu Rev Biochem; 2022 Jun; 91():269-294. PubMed ID: 35303785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radical SAM Enzymes and Ribosomally-Synthesized and Post-translationally Modified Peptides: A Growing Importance in the Microbiomes.
    Benjdia A; Berteau O
    Front Chem; 2021; 9():678068. PubMed ID: 34350157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radical Approach to Enzymatic β-Thioether Bond Formation.
    Caruso A; Bushin LB; Clark KA; Martinie RJ; Seyedsayamdost MR
    J Am Chem Soc; 2019 Jan; 141(2):990-997. PubMed ID: 30521328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radical SAM Enzymes in the Biosynthesis of Ribosomally Synthesized and Post-translationally Modified Peptides (RiPPs).
    Benjdia A; Balty C; Berteau O
    Front Chem; 2017; 5():87. PubMed ID: 29167789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome mining and genetic analysis of cypemycin biosynthesis reveal an unusual class of posttranslationally modified peptides.
    Claesen J; Bibb M
    Proc Natl Acad Sci U S A; 2010 Sep; 107(37):16297-302. PubMed ID: 20805503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a poly-cyclopropylglycine-containing peptide via bioinformatic mapping of radical S-adenosylmethionine enzymes.
    Kostenko A; Lien Y; Mendauletova A; Ngendahimana T; Novitskiy IM; Eaton SS; Latham JA
    J Biol Chem; 2022 May; 298(5):101881. PubMed ID: 35367210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.