These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 31337797)
1. Modified tailoring the electronic phase and emergence of midstates in impurity-imbrued armchair graphene nanoribbons. Hien ND; Mirabbaszadeh K; Davoudiniya M; Hoi BD; Phuong LTT; Yarmohammadi M Sci Rep; 2019 Jul; 9(1):10651. PubMed ID: 31337797 [TBL] [Abstract][Full Text] [Related]
2. Charged impurity-tuning of midgap states in biased Bernal bilayer black phosphorus: an anisotropic electronic phase transition. Le PTT; Mirabbaszadeh K; Davoudiniya M; Yarmohammadi M Phys Chem Chem Phys; 2018 Oct; 20(38):25044-25051. PubMed ID: 30246825 [TBL] [Abstract][Full Text] [Related]
4. Quantum transport along the armchair and zigzag edges of β Davoudiniya M; Mirabbaszadeh K Phys Chem Chem Phys; 2021 Dec; 23(46):26285-26295. PubMed ID: 34787129 [TBL] [Abstract][Full Text] [Related]
5. Influence of Davoudiniya M; Yang B; Sanyal B Phys Chem Chem Phys; 2024 Jan; 26(3):1936-1949. PubMed ID: 38116600 [TBL] [Abstract][Full Text] [Related]
6. Semiconducting states and transport in metallic armchair-edged graphene nanoribbons. Chen X; Wang H; Wan H; Song K; Zhou G J Phys Condens Matter; 2011 Aug; 23(31):315304. PubMed ID: 21778565 [TBL] [Abstract][Full Text] [Related]
7. Quantum Confinement in Epitaxial Armchair Graphene Nanoribbons on SiC Sidewalls. Nhung Nguyen TT; Power SR; Karakachian H; Starke U; Tegenkamp C ACS Nano; 2023 Oct; 17(20):20345-20352. PubMed ID: 37788294 [TBL] [Abstract][Full Text] [Related]
8. Finite-size effects on electronic structure and local properties in passivated AA-stacked bilayer armchair-edge graphene nanoribbons. Chen X; Shi Z; Xiang S; Song K; Zhou G J Phys Condens Matter; 2017 Mar; 29(8):085301. PubMed ID: 28000622 [TBL] [Abstract][Full Text] [Related]
9. Interplay of orbital hopping and perpendicular magnetic field in anisotropic phase transitions for Bernal bilayer graphene and hexagonal boron-nitride. T T Le P; Davoudiniya M; Yarmohammadi M Phys Chem Chem Phys; 2018 Dec; 21(1):238-245. PubMed ID: 30519687 [TBL] [Abstract][Full Text] [Related]
10. Electrically Induced Dirac Fermions in Graphene Nanoribbons. Pizzochero M; Tepliakov NV; Mostofi AA; Kaxiras E Nano Lett; 2021 Nov; 21(21):9332-9338. PubMed ID: 34714095 [TBL] [Abstract][Full Text] [Related]
11. Thermoelectric properties of armchair graphene nanoribbons with array characteristics. Kuo DMT RSC Adv; 2024 Jan; 14(5):3513-3518. PubMed ID: 38259995 [TBL] [Abstract][Full Text] [Related]
12. Electric field and charged impurity doping effects on the Schottky anomaly of β Hoi BD; Tung LV; Vinh PT; Khoa DQ; T T Phuong L Phys Chem Chem Phys; 2021 Jan; 23(3):2080-2087. PubMed ID: 33434258 [TBL] [Abstract][Full Text] [Related]
13. Correlation between energy band transition and optical absorption spectrum in bilayer armchair graphene nanoribbons. Nguyen LT; Ngo VC; Thai TL; Phan DT; Nguyen TA; Tran VT; Vu TT; Phan TK J Phys Condens Matter; 2023 Jun; 35(38):. PubMed ID: 37285859 [TBL] [Abstract][Full Text] [Related]
14. Edge-functionalization of armchair graphene nanoribbons with pentagonal-hexagonal edge structures. Ryou J; Park J; Kim G; Hong S J Phys Condens Matter; 2017 Jun; 29(24):245301. PubMed ID: 28443604 [TBL] [Abstract][Full Text] [Related]
15. Theoretical study of nitrogen, boron, and co-doped (B, N) armchair graphene nanoribbons. Javan M; Jorjani R; Soltani AR J Mol Model; 2020 Mar; 26(4):64. PubMed ID: 32125548 [TBL] [Abstract][Full Text] [Related]
16. Probing the Magnetism of Topological End States in 5-Armchair Graphene Nanoribbons. Lawrence J; Brandimarte P; Berdonces-Layunta A; Mohammed MSG; Grewal A; Leon CC; Sánchez-Portal D; de Oteyza DG ACS Nano; 2020 Apr; 14(4):4499-4508. PubMed ID: 32101402 [TBL] [Abstract][Full Text] [Related]
17. Electronic and magnetic properties of armchair graphene nanoribbons with 558 grain boundary. Dai QQ; Zhu YF; Jiang Q Phys Chem Chem Phys; 2014 Jun; 16(22):10607-13. PubMed ID: 24752487 [TBL] [Abstract][Full Text] [Related]
18. Impurity scattering effects on the validity of Fermi liquid theory in topological crystalline insulator SnTe (001) thin films. Hoa LT; Phong TC; Hoi BD Phys Chem Chem Phys; 2020 Jun; 22(24):13613-13621. PubMed ID: 32515759 [TBL] [Abstract][Full Text] [Related]
19. Large-scale solution synthesis of narrow graphene nanoribbons. Vo TH; Shekhirev M; Kunkel DA; Morton MD; Berglund E; Kong L; Wilson PM; Dowben PA; Enders A; Sinitskii A Nat Commun; 2014; 5():3189. PubMed ID: 24510014 [TBL] [Abstract][Full Text] [Related]
20. Quantum transport through the edge states of zigzag phosphorene nanoribbons in presence of a single point defect: analytic Green's function method. Amini M; Soltani M J Phys Condens Matter; 2019 May; 31(21):215301. PubMed ID: 30794998 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]