These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 31338074)
1. Comparative Transcriptome Profiling of Kang X; Guo Y; Leng S; Xiao L; Wang L; Xue Y; Liu C Front Microbiol; 2019; 10():1474. PubMed ID: 31338074 [TBL] [Abstract][Full Text] [Related]
2. A Comparative Transcriptomic and Proteomic Analysis of Hexaploid Wheat's Responses to Colonization by Kang X; Wang L; Guo Y; Ul Arifeen MZ; Cai X; Xue Y; Bu Y; Wang G; Liu C Mol Plant Microbe Interact; 2019 Oct; 32(10):1336-1347. PubMed ID: 31125282 [TBL] [Abstract][Full Text] [Related]
3. Comparative transcriptome profiling of the early infection of wheat roots by Gaeumannomyces graminis var. tritici. Yang L; Xie L; Xue B; Goodwin PH; Quan X; Zheng C; Liu T; Lei Z; Yang X; Chao Y; Wu C PLoS One; 2015; 10(4):e0120691. PubMed ID: 25875107 [TBL] [Abstract][Full Text] [Related]
4. Effect of wheat roots infected with the pathogenic fungus Gaeumannomyces graminis var. tritici on gene expression of the biocontrol bacterium Pseudomonas fluorescens Pf29Arp. Barret M; Frey-Klett P; Guillerm-Erckelboudt AY; Boutin M; Guernec G; Sarniguet A Mol Plant Microbe Interact; 2009 Dec; 22(12):1611-23. PubMed ID: 19888826 [TBL] [Abstract][Full Text] [Related]
5. The biocontrol bacterium Pseudomonas fluorescens Pf29Arp strain affects the pathogenesis-related gene expression of the take-all fungus Gaeumannomyces graminis var. tritici on wheat roots. Daval S; Lebreton L; Gazengel K; Boutin M; Guillerm-Erckelboudt AY; Sarniguet A Mol Plant Pathol; 2011 Dec; 12(9):839-54. PubMed ID: 21726382 [TBL] [Abstract][Full Text] [Related]
6. Novel screening strategy reveals a potent Bacillus antagonist capable of mitigating wheat take-all disease caused by Gaeumannomyces graminis var. tritici. Zhang DD; Guo XJ; Wang YJ; Gao TG; Zhu BC Lett Appl Microbiol; 2017 Dec; 65(6):512-519. PubMed ID: 28977681 [TBL] [Abstract][Full Text] [Related]
7. An attempt to protect winter wheat against Gaeumannomyces graminis var. tritici by the use of rhizobacteria Pseudomonas fluorescens and Bacillus mycoides. Czaban J; Ksiezniak A; Wróblewska B; Paszkowski WL Pol J Microbiol; 2004; 53(2):101-10. PubMed ID: 15478355 [TBL] [Abstract][Full Text] [Related]
8. Influence of Liu Z; Xiao J; Zhang X; Dou S; Gao T; Wang D; Zhang D Front Microbiol; 2022; 13():923242. PubMed ID: 36118228 [TBL] [Abstract][Full Text] [Related]
9. The plant pathogenic fungus Gaeumannomyces graminis var. tritici improves bacterial growth and triggers early gene regulations in the biocontrol strain Pseudomonas fluorescens Pf29Arp. Barret M; Frey-Klett P; Boutin M; Guillerm-Erckelboudt AY; Martin F; Guillot L; Sarniguet A New Phytol; 2009 Jan; 181(2):435-447. PubMed ID: 19121038 [TBL] [Abstract][Full Text] [Related]
10. Antifungal Effects of Drimane Sesquiterpenoids Isolated from Paz C; Viscardi S; Iturra A; Marin V; Miranda F; Barra PJ; Mendez I; Duran P Appl Environ Microbiol; 2020 Nov; 86(24):. PubMed ID: 33036992 [No Abstract] [Full Text] [Related]
11. Bacillus velezensis CC09: A Potential 'Vaccine' for Controlling Wheat Diseases. Kang X; Zhang W; Cai X; Zhu T; Xue Y; Liu C Mol Plant Microbe Interact; 2018 Jun; 31(6):623-632. PubMed ID: 29372814 [TBL] [Abstract][Full Text] [Related]
12. Melanin Induction Restores the Pathogenicity of Aranda C; Méndez I; Barra PJ; Hernández-Montiel L; Fallard A; Tortella G; Briones E; Durán P J Fungi (Basel); 2023 Mar; 9(3):. PubMed ID: 36983518 [TBL] [Abstract][Full Text] [Related]
13. Activity of Fengycin and Iturin A Isolated From Xiao J; Guo X; Qiao X; Zhang X; Chen X; Zhang D Front Microbiol; 2021; 12():682437. PubMed ID: 34220767 [No Abstract] [Full Text] [Related]
14. Changes in population structure of the soilborne fungus Gaeumannomyces graminis var. tritici during continuous wheat cropping. Lebreton L; Lucas P; Dugas F; Guillerm AY; Schoeny A; Sarniguet A Environ Microbiol; 2004 Nov; 6(11):1174-85. PubMed ID: 15479250 [TBL] [Abstract][Full Text] [Related]
15. First Report of Gaeumannomyces graminis var. graminis on Seashore Paspalum in the United States. Elmore WC; Gooch MD; Stiles CM Plant Dis; 2002 Dec; 86(12):1405. PubMed ID: 30818459 [TBL] [Abstract][Full Text] [Related]
16. Detection of Gaeumannomyces graminis Varieties Using Polymerase Chain Reaction with Variety-Specific Primers. Fouly HM; Wilkinson HT Plant Dis; 2000 Sep; 84(9):947-951. PubMed ID: 30832025 [TBL] [Abstract][Full Text] [Related]
17. Detoxification of Benzoxazolinone Allelochemicals from Wheat by Gaeumannomyces graminis var. tritici, G. graminis var. graminis, G. graminis var. avenae, and Fusarium culmorum. Friebe A; Vilich V; Hennig L; Kluge M; Sicker D Appl Environ Microbiol; 1998 Jul; 64(7):2386-91. PubMed ID: 9647804 [TBL] [Abstract][Full Text] [Related]
18. Persistence of DNA of Gaeumannomyces graminis var. tritici in soil as measured by a DNA-based assay. Herdina ; Neate S; Jabaji-Hare S; Ophel-Keller K FEMS Microbiol Ecol; 2004 Feb; 47(2):143-52. PubMed ID: 19712330 [TBL] [Abstract][Full Text] [Related]
19. Genomic and metabolic traits endow Bacillus velezensis CC09 with a potential biocontrol agent in control of wheat powdery mildew disease. Cai XC; Liu CH; Wang BT; Xue YR Microbiol Res; 2017 Mar; 196():89-94. PubMed ID: 28164794 [TBL] [Abstract][Full Text] [Related]
20. Linear relationship between Gaeumannomyces graminis var. tritici (Ggt) genotypic frequencies and disease severity on wheat roots in the field. Lebreton L; Gosme M; Lucas P; Guillerm-Erckelboudt AY; Sarniguet A Environ Microbiol; 2007 Feb; 9(2):492-9. PubMed ID: 17222147 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]