BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31338388)

  • 1. Benchmarking Wilms' tumor in multisequence MRI data: why does current clinical practice fail? Which popular segmentation algorithms perform well?
    Müller S; Farag I; Weickert J; Braun Y; Lollert A; Dobberstein J; Hötker A; Graf N
    J Med Imaging (Bellingham); 2019 Jul; 6(3):034001. PubMed ID: 31338388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiologic versus Segmentation Measurements to Quantify Wilms Tumor Volume on MRI in Pediatric Patients.
    Buser MAD; van der Steeg AFW; Wijnen MHWA; Fitski M; van Tinteren H; van den Heuvel-Eibrink MM; Littooij AS; van der Velden BHM
    Cancers (Basel); 2023 Apr; 15(7):. PubMed ID: 37046776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Segmenting brain tumors from FLAIR MRI using fully convolutional neural networks.
    Ribalta Lorenzo P; Nalepa J; Bobek-Billewicz B; Wawrzyniak P; Mrukwa G; Kawulok M; Ulrych P; Hayball MP
    Comput Methods Programs Biomed; 2019 Jul; 176():135-148. PubMed ID: 31200901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of target volume segmentation accuracy and variability on treatment planning for 4D-CT-based non-small cell lung cancer radiotherapy.
    Martin S; Johnson C; Brophy M; Palma DA; Barron JL; Beauchemin SS; Louie AV; Yu E; Yaremko B; Ahmad B; Rodrigues GB; Gaede S
    Acta Oncol; 2015 Mar; 54(3):322-32. PubMed ID: 25350526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fully automated detection and segmentation of meningiomas using deep learning on routine multiparametric MRI.
    Laukamp KR; Thiele F; Shakirin G; Zopfs D; Faymonville A; Timmer M; Maintz D; Perkuhn M; Borggrefe J
    Eur Radiol; 2019 Jan; 29(1):124-132. PubMed ID: 29943184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An investigation of the effect of fat suppression and dimensionality on the accuracy of breast MRI segmentation using U-nets.
    Fashandi H; Kuling G; Lu Y; Wu H; Martel AL
    Med Phys; 2019 Mar; 46(3):1230-1244. PubMed ID: 30609062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wilms' tumor 1991. Clinical evaluation and treatment.
    Exelby PR
    Urol Clin North Am; 1991 Aug; 18(3):589-97. PubMed ID: 1652172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatially varying accuracy and reproducibility of prostate segmentation in magnetic resonance images using manual and semiautomated methods.
    Shahedi M; Cool DW; Romagnoli C; Bauman GS; Bastian-Jordan M; Gibson E; Rodrigues G; Ahmad B; Lock M; Fenster A; Ward AD
    Med Phys; 2014 Nov; 41(11):113503. PubMed ID: 25370674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D convolutional neural networks for tumor segmentation using long-range 2D context.
    Mlynarski P; Delingette H; Criminisi A; Ayache N
    Comput Med Imaging Graph; 2019 Apr; 73():60-72. PubMed ID: 30889541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of hyperthermia 42.5 degrees C/120 min on 3H-thymidine incorporation in different tissue components of Wilms' tumors: an in vitro study.
    Willnow U; Dumon K; Godehardt E
    Klin Padiatr; 1996; 208(4):145-50. PubMed ID: 8776702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic segmentation variability estimation with segmentation priors.
    Joskowicz L; Cohen D; Caplan N; Sosna J
    Med Image Anal; 2018 Dec; 50():54-64. PubMed ID: 30208356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain tumor target volume determination for radiation treatment planning through automated MRI segmentation.
    Mazzara GP; Velthuizen RP; Pearlman JL; Greenberg HM; Wagner H
    Int J Radiat Oncol Biol Phys; 2004 May; 59(1):300-12. PubMed ID: 15093927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semi-automated brain tumor and edema segmentation using MRI.
    Xie K; Yang J; Zhang ZG; Zhu YM
    Eur J Radiol; 2005 Oct; 56(1):12-9. PubMed ID: 16168259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using deep learning to segment breast and fibroglandular tissue in MRI volumes.
    Dalmış MU; Litjens G; Holland K; Setio A; Mann R; Karssemeijer N; Gubern-Mérida A
    Med Phys; 2017 Feb; 44(2):533-546. PubMed ID: 28035663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stacking denoising auto-encoders in a deep network to segment the brainstem on MRI in brain cancer patients: A clinical study.
    Dolz J; Betrouni N; Quidet M; Kharroubi D; Leroy HA; Reyns N; Massoptier L; Vermandel M
    Comput Med Imaging Graph; 2016 Sep; 52():8-18. PubMed ID: 27236370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated Segmentation of Hyperintense Regions in FLAIR MRI Using Deep Learning.
    Korfiatis P; Kline TL; Erickson BJ
    Tomography; 2016 Dec; 2(4):334-340. PubMed ID: 28066806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MRI of Wilms' tumor: promise as the primary imaging method.
    Belt TG; Cohen MD; Smith JA; Cory DA; McKenna S; Weetman R
    AJR Am J Roentgenol; 1986 May; 146(5):955-61. PubMed ID: 3008542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping intravascular extension of Wilms' tumor with magnetic resonance imaging.
    Weese DL; Applebaum H; Taber P
    J Pediatr Surg; 1991 Jan; 26(1):64-7. PubMed ID: 1848614
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.