These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 31338778)

  • 21. Coupled physical and digital cadaver dissection followed by a visual test protocol provides insights into the nature of anatomical knowledge and its evaluation.
    Hisley KC; Anderson LD; Smith SE; Kavic SM; Tracy JK
    Anat Sci Educ; 2008 Jan; 1(1):27-40. PubMed ID: 19177376
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automated liver segmentation from a postmortem CT scan based on a statistical shape model.
    Saito A; Yamamoto S; Nawano S; Shimizu A
    Int J Comput Assist Radiol Surg; 2017 Feb; 12(2):205-221. PubMed ID: 27659283
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Towards Advanced Interactive Visualization for Virtual Atlases.
    Smit N; Bruckner S
    Adv Exp Med Biol; 2019; 1156():85-96. PubMed ID: 31338779
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Joint optimization of segmentation and shape prior from level-set-based statistical shape model, and its application to the automated segmentation of abdominal organs.
    Saito A; Nawano S; Shimizu A
    Med Image Anal; 2016 Feb; 28():46-65. PubMed ID: 26716720
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Posture normalisation of 3D body scans.
    Danckaers F; Huysmans T; Hallemans A; De Bruyne G; Truijen S; Sijbers J
    Ergonomics; 2019 Jun; 62(6):834-848. PubMed ID: 30777506
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shape-aware surface reconstruction from sparse 3D point-clouds.
    Bernard F; Salamanca L; Thunberg J; Tack A; Jentsch D; Lamecker H; Zachow S; Hertel F; Goncalves J; Gemmar P
    Med Image Anal; 2017 May; 38():77-89. PubMed ID: 28282642
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Level set distribution model of nested structures using logarithmic transformation.
    Saito A; Tsujikawa M; Takakuwa T; Yamada S; Shimizu A
    Med Image Anal; 2019 Aug; 56():1-10. PubMed ID: 31125739
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Learning continuous shape priors from sparse data with neural implicit functions.
    Amiranashvili T; Lüdke D; Li HB; Zachow S; Menze BH
    Med Image Anal; 2024 May; 94():103099. PubMed ID: 38395009
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Building virtual models by postprocessing radiology images: A guide for anatomy faculty.
    Tam MD
    Anat Sci Educ; 2010; 3(5):261-6. PubMed ID: 20827725
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A recommended workflow methodology in the creation of an educational and training application incorporating a digital reconstruction of the cerebral ventricular system and cerebrospinal fluid circulation to aid anatomical understanding.
    Manson A; Poyade M; Rea P
    BMC Med Imaging; 2015 Oct; 15():44. PubMed ID: 26482126
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessment of shape variation of the levator ani with optimal scan planning and statistical shape modeling.
    Lee SL; Horkaew P; Caspersz W; Darzi A; Yang GZ
    J Comput Assist Tomogr; 2005; 29(2):154-62. PubMed ID: 15772530
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3-D object recognition using 2-D views.
    Li W; Bebis G; Bourbakis NG
    IEEE Trans Image Process; 2008 Nov; 17(11):2236-55. PubMed ID: 18854254
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Medical image segmentation via atlases and fuzzy object models: Improving efficacy through optimum object search and fewer models.
    Phellan R; Falcão AX; Udupa JK
    Med Phys; 2016 Jan; 43(1):401. PubMed ID: 26745933
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Statistical Interspace Models (SIMs): Application to Robust 3D Spine Segmentation.
    Castro-Mateos I; Pozo JM; Pereañez M; Lekadir K; Lazary A; Frangi AF
    IEEE Trans Med Imaging; 2015 Aug; 34(8):1663-75. PubMed ID: 26080379
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Learning-based stochastic object models for characterizing anatomical variations.
    Dolly SR; Lou Y; Anastasio MA; Li H
    Phys Med Biol; 2018 Mar; 63(6):065004. PubMed ID: 29536945
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Topographic approach to the study of the human body.
    Burykh MP
    Clin Anat; 2004 Jul; 17(5):423-8. PubMed ID: 15176042
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Developing a three-dimensional statistical shape model of normal dentition using an automated algorithm and normal samples.
    Kim HH; Choi S; Chang YI; Yi WJ; Ahn SJ
    Clin Oral Investig; 2023 Feb; 27(2):759-772. PubMed ID: 36484849
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of the pre-morbid 3D anatomy of the proximal humerus based on statistical shape modelling.
    Poltaretskyi S; Chaoui J; Mayya M; Hamitouche C; Bercik MJ; Boileau P; Walch G
    Bone Joint J; 2017 Jul; 99-B(7):927-933. PubMed ID: 28663399
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Posterior shape models.
    Albrecht T; Lüthi M; Gerig T; Vetter T
    Med Image Anal; 2013 Dec; 17(8):959-73. PubMed ID: 23837968
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two-dimensional sectioned images and three-dimensional surface models for learning the anatomy of the female pelvis.
    Shin DS; Jang HG; Hwang SB; Har DH; Moon YL; Chung MS
    Anat Sci Educ; 2013; 6(5):316-23. PubMed ID: 23463707
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.