BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31338819)

  • 1. DNA Damage Response in Quiescent Hematopoietic Stem Cells and Leukemia Stem Cells.
    Zhang W; Wang G; Liang A
    Adv Exp Med Biol; 2019; 1143():147-171. PubMed ID: 31338819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cell of origin and the leukemia stem cell in acute myeloid leukemia.
    Chopra M; Bohlander SK
    Genes Chromosomes Cancer; 2019 Dec; 58(12):850-858. PubMed ID: 31471945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative resistance of leukemic stem cells and oxidative damage to hematopoietic stem cells under pro-oxidative therapy.
    Chen Y; Liang Y; Luo X; Hu Q
    Cell Death Dis; 2020 Apr; 11(4):291. PubMed ID: 32341354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CD93 Marks a Non-Quiescent Human Leukemia Stem Cell Population and Is Required for Development of MLL-Rearranged Acute Myeloid Leukemia.
    Iwasaki M; Liedtke M; Gentles AJ; Cleary ML
    Cell Stem Cell; 2015 Oct; 17(4):412-21. PubMed ID: 26387756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNA-9 promotes proliferation of leukemia cells in adult CD34-positive acute myeloid leukemia with normal karyotype by downregulation of Hes1.
    Tian C; You MJ; Yu Y; Zhu L; Zheng G; Zhang Y
    Tumour Biol; 2016 Jun; 37(6):7461-71. PubMed ID: 26678889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The immune receptor Trem1 cooperates with diminished DNA damage response to induce preleukemic stem cell expansion.
    Du W; Amarachintha S; Wilson A; Pang Q
    Leukemia; 2017 Feb; 31(2):423-433. PubMed ID: 27568523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA-damage response in hematopoietic stem cells: an evolutionary trade-off between blood regeneration and leukemia suppression.
    Biechonski S; Yassin M; Milyavsky M
    Carcinogenesis; 2017 Apr; 38(4):367-377. PubMed ID: 28334174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Acute myeloid leukemia stem cells from genomic and immunological perspectives].
    Goyama S
    Rinsho Ketsueki; 2020; 61(9):1130-1137. PubMed ID: 33162508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PTEN and leukemia stem cells.
    Fragoso R; Barata JT
    Adv Biol Regul; 2014 Sep; 56():22-9. PubMed ID: 24961634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The ordered acquisition of Class II and Class I mutations directs formation of human t(8;21) acute myelogenous leukemia stem cell.
    Shima T; Miyamoto T; Kikushige Y; Yuda J; Tochigi T; Yoshimoto G; Kato K; Takenaka K; Iwasaki H; Mizuno S; Goto N; Akashi K
    Exp Hematol; 2014 Nov; 42(11):955-65.e1-5. PubMed ID: 25101977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel therapeutic strategies to target leukemic cells that hijack compartmentalized continuous hematopoietic stem cell niches.
    Hira VVV; Van Noorden CJF; Carraway HE; Maciejewski JP; Molenaar RJ
    Biochim Biophys Acta Rev Cancer; 2017 Aug; 1868(1):183-198. PubMed ID: 28363872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leukemia stem cells.
    Buss EC; Ho AD
    Int J Cancer; 2011 Nov; 129(10):2328-36. PubMed ID: 21796620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Progress in the leukemic stem cell study and a novel therapeutic approach targeting leukemic stem cells].
    Kikushige Y; Miyamoto T; Akashi K
    Rinsho Ketsueki; 2017; 58(10):1838-1843. PubMed ID: 28978822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quiescence regulation by normal haematopoietic stem cells and leukaemia stem cells.
    Gudmundsson KO; Du Y
    FEBS J; 2023 Aug; 290(15):3708-3722. PubMed ID: 35514133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting the acute myeloid leukemia stem cells.
    Krause A; Luciana M; Krause F; Rego EM
    Anticancer Agents Med Chem; 2010 Feb; 10(2):104-10. PubMed ID: 20184541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leukemia Stem Cells Microenvironment.
    Tabe Y; Konopleva M
    Adv Exp Med Biol; 2017; 1041():19-32. PubMed ID: 29204827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The pan-Bcl2 Inhibitor AT101 Activates the Intrinsic Apoptotic Pathway and Causes DNA Damage in Acute Myeloid Leukemia Stem-Like Cells.
    Zhang L; Zhou Y; Chen K; Shi P; Li Y; Deng M; Jiang Z; Wang X; Li P; Xu B
    Target Oncol; 2017 Oct; 12(5):677-687. PubMed ID: 28710745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of TIM-3 as a Leukemic Stem Cell Surface Molecule in Primary Acute Myeloid Leukemia.
    Kikushige Y; Miyamoto T
    Oncology; 2015; 89 Suppl 1():28-32. PubMed ID: 26551150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic Abnormalities in Acute Myeloid Leukemia and Leukemia Stem Cells.
    Xu J; Hang X; Wu B; Chen C; Liu Y
    Adv Exp Med Biol; 2019; 1143():173-189. PubMed ID: 31338820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential redox-regulation and mitochondrial dynamics in normal and leukemic hematopoietic stem cells: A potential window for leukemia therapy.
    Mattes K; Vellenga E; Schepers H
    Crit Rev Oncol Hematol; 2019 Dec; 144():102814. PubMed ID: 31593878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.