BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31339137)

  • 1. Spiropyrans for light-controlled drug delivery.
    Cardano F; Del Canto E; Giordani S
    Dalton Trans; 2019 Nov; 48(41):15537-15544. PubMed ID: 31339137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photo-controlled release of zinc metal ions by spiropyran receptors anchored to single-walled carbon nanotubes.
    Del Canto E; Natali M; Movia D; Giordani S
    Phys Chem Chem Phys; 2012 May; 14(17):6034-43. PubMed ID: 22446851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water-soluble Py-BIPS spiropyrans as photoswitches for biological applications.
    Özçoban C; Halbritter T; Steinwand S; Herzig LM; Kohl-Landgraf J; Askari N; Groher F; Fürtig B; Richter C; Schwalbe H; Suess B; Wachtveitl J; Heckel A
    Org Lett; 2015 Mar; 17(6):1517-20. PubMed ID: 25760939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spiropyran photoswitches in the context of DNA: synthesis and photochromic properties.
    Brieke C; Heckel A
    Chemistry; 2013 Nov; 19(46):15726-34. PubMed ID: 24115210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photo-control of the mitotic kinesin Eg5 using a novel photochromic inhibitor composed of a spiropyran derivative.
    Sadakane K; Takaichi M; Maruta S
    J Biochem; 2018 Sep; 164(3):239-246. PubMed ID: 29718428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photo, pH, and thermo triple-responsive spiropyran-based copolymer nanoparticles for controlled release.
    Chen S; Jiang F; Cao Z; Wang G; Dang ZM
    Chem Commun (Camb); 2015 Aug; 51(63):12633-6. PubMed ID: 26160558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO2 triggering and controlling orthogonally multiresponsive photochromic systems.
    Darwish TA; Evans RA; James M; Malic N; Triani G; Hanley TL
    J Am Chem Soc; 2010 Aug; 132(31):10748-55. PubMed ID: 20681707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photo-responsive liposomes composed of spiropyran-containing triazole-phosphatidylcholine: investigation of merocyanine-stacking effects on liposome-fiber assembly-transition.
    Zhang D; Shah PK; Culver HR; David SN; Stansbury JW; Yin X; Bowman CN
    Soft Matter; 2019 May; 15(18):3740-3750. PubMed ID: 31042253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracking the light-induced isomerization processes and the photostability of spiropyrans embedded in the pores of crystalline nanoporous MOFs
    Schwartz HA; Schaniel D; Ruschewitz U
    Photochem Photobiol Sci; 2020 Oct; 19(10):1433-1441. PubMed ID: 32991663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visible Light-Induced Supra-Amphiphilic Switch Leads to Transition from Supramolecular Nanosphere to Nanovesicle Activated by Pillar[5]arene-Based Host-Guest Interaction.
    Li P; Yao Q; Lü B; Ma G; Yin M
    Macromol Rapid Commun; 2018 Oct; 39(20):e1800133. PubMed ID: 29786904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-responsive supramolecular hydrogels based on merocyanine-peptide conjugates.
    Wang W; Hu J; Zheng M; Zheng L; Wang H; Zhang Y
    Org Biomol Chem; 2015 Dec; 13(47):11492-8. PubMed ID: 26456175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient Brewster angle reflectometry of spiropyran monolayers.
    Gorelik S; Hongyan S; Lear MJ; Hobley J
    Photochem Photobiol Sci; 2010 Feb; 9(2):141-51. PubMed ID: 20126787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rewritable Optical Storage with a Spiropyran Doped Liquid Crystal Polymer Film.
    Petriashvili G; De Santo MP; Devadze L; Zurabishvili T; Sepashvili N; Gary R; Barberi R
    Macromol Rapid Commun; 2016 Mar; 37(6):500-5. PubMed ID: 26864876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spiropyran-linked dipeptide forms supramolecular hydrogel with dual responses to light and to ligand-receptor interaction.
    Qiu Z; Yu H; Li J; Wang Y; Zhang Y
    Chem Commun (Camb); 2009 Jun; (23):3342-4. PubMed ID: 19503864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spiropyran as a selective, sensitive, and reproducible cyanide anion receptor.
    Shiraishi Y; Adachi K; Itoh M; Hirai T
    Org Lett; 2009 Aug; 11(15):3482-5. PubMed ID: 19719191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Switching properties of a spiropyran-cucurbit[7]uril supramolecular assembly: usefulness of the anchor approach.
    Nilsson JR; Parente Carvalho C; Li S; Da Silva JP; Andréasson J; Pischel U
    Chemphyschem; 2012 Nov; 13(16):3691-9. PubMed ID: 22927227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dual-functional supramolecular hydrogel based on a spiropyran-galactose conjugate for target-mediated and light-controlled delivery of microRNA into cells.
    Xiao X; Hu J; Wang X; Huang L; Chen Y; Wang W; Li J; Zhang Y
    Chem Commun (Camb); 2016 Oct; 52(84):12517-12520. PubMed ID: 27711358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photomodulation of the electrode potential of a photochromic spiropyran-modified Au electrode in the presence of Zn2+: a new molecular switch based on the electronic transduction of the optical signals.
    Wen G; Yan J; Zhou Y; Zhang D; Mao L; Zhu D
    Chem Commun (Camb); 2006 Jul; (28):3016-8. PubMed ID: 16832522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction studies between photochromic spiropyrans and transition metal cations: the curious case of copper.
    Natali M; Giordani S
    Org Biomol Chem; 2012 Feb; 10(6):1162-71. PubMed ID: 22146800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupled molecular motions driven by light or chemical inputs: spiropyran to merocyanine isomerisation followed by pseudorotaxane formation.
    Hernández-Melo D; Tiburcio J
    Chem Commun (Camb); 2015 Dec; 51(99):17564-7. PubMed ID: 26478927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.