BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 31339168)

  • 1. Evolutionary signatures of photoreceptor transmutation in geckos reveal potential adaptation and convergence with snakes.
    Schott RK; Bhattacharyya N; Chang BSW
    Evolution; 2019 Sep; 73(9):1958-1971. PubMed ID: 31339168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple rod-cone and cone-rod photoreceptor transmutations in snakes: evidence from visual opsin gene expression.
    Simões BF; Sampaio FL; Loew ER; Sanders KL; Fisher RN; Hart NS; Hunt DM; Partridge JC; Gower DJ
    Proc Biol Sci; 2016 Jan; 283(1823):. PubMed ID: 26817768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptations and evolutionary trajectories of the snake rod and cone photoreceptors.
    Hauzman E
    Semin Cell Dev Biol; 2020 Oct; 106():86-93. PubMed ID: 32359892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic data support a nocturnal bottleneck in the ancestor of gecko lizards.
    Pinto BJ; Nielsen SV; Gamble T
    Mol Phylogenet Evol; 2019 Dec; 141():106639. PubMed ID: 31586687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary transformation of rod photoreceptors in the all-cone retina of a diurnal garter snake.
    Schott RK; Müller J; Yang CG; Bhattacharyya N; Chan N; Xu M; Morrow JM; Ghenu AH; Loew ER; Tropepe V; Chang BS
    Proc Natl Acad Sci U S A; 2016 Jan; 113(2):356-61. PubMed ID: 26715746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tokay gecko photoreceptors achieve rod-like physiology with cone-like proteins.
    Zhang X; Wensel TG; Yuan C
    Photochem Photobiol; 2006; 82(6):1452-60. PubMed ID: 16553462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shifts in Selective Pressures on Snake Phototransduction Genes Associated with Photoreceptor Transmutation and Dim-Light Ancestry.
    Schott RK; Van Nynatten A; Card DC; Castoe TA; S W Chang B
    Mol Biol Evol; 2018 Jun; 35(6):1376-1389. PubMed ID: 29800394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pushing the limits of photoreception in twilight conditions: The rod-like cone retina of the deep-sea pearlsides.
    de Busserolles F; Cortesi F; Helvik JV; Davies WIL; Templin RM; Sullivan RKP; Michell CT; Mountford JK; Collin SP; Irigoien X; Kaartvedt S; Marshall J
    Sci Adv; 2017 Nov; 3(11):eaao4709. PubMed ID: 29134201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cone-like rhodopsin expressed in the all-cone retina of the colubrid pine snake as a potential adaptation to diurnality.
    Bhattacharyya N; Darren B; Schott RK; Tropepe V; Chang BSW
    J Exp Biol; 2017 Jul; 220(Pt 13):2418-2425. PubMed ID: 28468872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shedding light on serpent sight: the visual pigments of henophidian snakes.
    Davies WL; Cowing JA; Bowmaker JK; Carvalho LS; Gower DJ; Hunt DM
    J Neurosci; 2009 Jun; 29(23):7519-25. PubMed ID: 19515920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Daily activity patterns influence retinal morphology, signatures of selection, and spectral tuning of opsin genes in colubrid snakes.
    Hauzman E; Bonci DMO; Suárez-Villota EY; Neitz M; Ventura DF
    BMC Evol Biol; 2017 Dec; 17(1):249. PubMed ID: 29228925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual system evolution and the nature of the ancestral snake.
    Simões BF; Sampaio FL; Jared C; Antoniazzi MM; Loew ER; Bowmaker JK; Rodriguez A; Hart NS; Hunt DM; Partridge JC; Gower DJ
    J Evol Biol; 2015 Jul; 28(7):1309-20. PubMed ID: 26012745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rod and cone visual pigments and phototransduction through pharmacological, genetic, and physiological approaches.
    Kefalov VJ
    J Biol Chem; 2012 Jan; 287(3):1635-41. PubMed ID: 22074928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nocturnal colour vision in geckos.
    Roth LS; Kelber A
    Proc Biol Sci; 2004 Dec; 271 Suppl 6(Suppl 6):S485-7. PubMed ID: 15801611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual Pigments, Ocular Filters and the Evolution of Snake Vision.
    Simões BF; Sampaio FL; Douglas RH; Kodandaramaiah U; Casewell NR; Harrison RA; Hart NS; Partridge JC; Hunt DM; Gower DJ
    Mol Biol Evol; 2016 Oct; 33(10):2483-95. PubMed ID: 27535583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phototransduction in Anuran Green Rods: Origins of Extra-Sensitivity.
    Astakhova LA; Novoselov AD; Ermolaeva ME; Firsov ML; Rotov AY
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual cells and visual pigments of the river lamprey revisited.
    Govardovskii V; Rotov A; Astakhova L; Nikolaeva D; Firsov M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2020 Jan; 206(1):71-84. PubMed ID: 31942647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Physiology of the visual retinal signal: From phototransduction to the visual cycle].
    Salesse C
    J Fr Ophtalmol; 2017 Mar; 40(3):239-250. PubMed ID: 28318721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular evolution of proteins involved in vertebrate phototransduction.
    Hisatomi O; Tokunaga F
    Comp Biochem Physiol B Biochem Mol Biol; 2002 Dec; 133(4):509-22. PubMed ID: 12470815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of visual pigments in geckos.
    Taniguchi Y; Hisatomi O; Yoshida M; Tokunaga F
    FEBS Lett; 1999 Feb; 445(1):36-40. PubMed ID: 10069370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.