These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 31339308)
21. Lai L; Villanueva M; Muruzabal-Galarza A; Fernández AB; Unzue A; Toledo-Arana A; Caballero P; Caballero CJ Toxins (Basel); 2023 Mar; 15(3):. PubMed ID: 36977103 [No Abstract] [Full Text] [Related]
22. Binding of Cyt1Aa and Cry11Aa toxins of Bacillus thuringiensis serovar israelensis to brush border membrane vesicles of Tipula paludosa (Diptera: Nematocera) and subsequent pore formation. Oestergaard J; Ehlers RU; Martínez-Ramírez AC; Real MD Appl Environ Microbiol; 2007 Jun; 73(11):3623-9. PubMed ID: 17416690 [TBL] [Abstract][Full Text] [Related]
23. In vivo nanoscale analysis of the dynamic synergistic interaction of Bacillus thuringiensis Cry11Aa and Cyt1Aa toxins in Aedes aegypti. López-Molina S; do Nascimento NA; Silva-Filha MHNL; Guerrero A; Sánchez J; Pacheco S; Gill SS; Soberón M; Bravo A PLoS Pathog; 2021 Jan; 17(1):e1009199. PubMed ID: 33465145 [TBL] [Abstract][Full Text] [Related]
24. Employing phage display to study the mode of action of Bacillus thuringiensis Cry toxins. Fernández LE; Gómez I; Pacheco S; Arenas I; Gilla SS; Bravo A; Soberón M Peptides; 2008 Feb; 29(2):324-9. PubMed ID: 18226423 [TBL] [Abstract][Full Text] [Related]
25. Comparative proteomic analysis of Aedes aegypti larval midgut after intoxication with Cry11Aa toxin from Bacillus thuringiensis. Cancino-Rodezno A; Lozano L; Oppert C; Castro JI; Lanz-Mendoza H; Encarnación S; Evans AE; Gill SS; Soberón M; Jurat-Fuentes JL; Bravo A PLoS One; 2012; 7(5):e37034. PubMed ID: 22615881 [TBL] [Abstract][Full Text] [Related]
26. Cloning, expression and activity of ATP-binding protein in Bacillus thuringiensis toxicity modulation against Aedes aegypti. Zhao GH; Liu JN; Hu XH; Batool K; Jin L; Wu CX; Wu J; Chen H; Jiang XY; Yang ZH; Huang XH; Huang EJ; Yu XQ; Guan X; Zhang LL Parasit Vectors; 2019 Jun; 12(1):319. PubMed ID: 31238963 [TBL] [Abstract][Full Text] [Related]
27. Receptors are affected by selection with each Bacillus thuringiensis israelensis Cry toxin but not with the full Bti mixture in Aedes aegypti. Stalinski R; Laporte F; Tetreau G; Després L Infect Genet Evol; 2016 Oct; 44():218-227. PubMed ID: 27418233 [TBL] [Abstract][Full Text] [Related]
28. Oligomerization of Cry11Aa from Bacillus thuringiensis has an important role in toxicity against Aedes aegypti. Muñoz-Garay C; Rodríguez-Almazán C; Aguilar JN; Portugal L; Gómez I; Saab-Rincon G; Soberón M; Bravo A Appl Environ Microbiol; 2009 Dec; 75(23):7548-50. PubMed ID: 19820153 [TBL] [Abstract][Full Text] [Related]
29. Knockout of Two Cry-Binding Aminopeptidase N Isoforms Does Not Change Susceptibility of Wang J; Yang X; He H; Chen J; Liu Y; Huang W; Ou L; Yang Z; Guan X; Zhang L; Wu S Insects; 2021 Mar; 12(3):. PubMed ID: 33807543 [TBL] [Abstract][Full Text] [Related]
30. A GPI-anchored alkaline phosphatase is a functional midgut receptor of Cry11Aa toxin in Aedes aegypti larvae. Fernandez LE; Aimanova KG; Gill SS; Bravo A; Soberón M Biochem J; 2006 Feb; 394(Pt 1):77-84. PubMed ID: 16255715 [TBL] [Abstract][Full Text] [Related]
31. Interaction of Bacillus thuringiensis svar. israelensis Cry toxins with binding sites from Aedes aegypti (Diptera: Culicidae) larvae midgut. de Barros Moreira Beltrão H; Silva-Filha MH FEMS Microbiol Lett; 2007 Jan; 266(2):163-9. PubMed ID: 17132151 [TBL] [Abstract][Full Text] [Related]
32. Oligomerization is a key step in Cyt1Aa membrane insertion and toxicity but not necessary to synergize Cry11Aa toxicity in Aedes aegypti larvae. López-Diaz JA; Cantón PE; Gill SS; Soberón M; Bravo A Environ Microbiol; 2013 Nov; 15(11):3030-9. PubMed ID: 24112611 [TBL] [Abstract][Full Text] [Related]
33. A 104 kDa Aedes aegypti aminopeptidase N is a putative receptor for the Cry11Aa toxin from Bacillus thuringiensis subsp. israelensis. Chen J; Likitvivatanavong S; Aimanova KG; Gill SS Insect Biochem Mol Biol; 2013 Dec; 43(12):1201-8. PubMed ID: 24128608 [TBL] [Abstract][Full Text] [Related]
34. Two specific membrane-bound aminopeptidase N isoforms from Aedes aegypti larvae serve as functional receptors for the Bacillus thuringiensis Cry4Ba toxin implicating counterpart specificity. Aroonkesorn A; Pootanakit K; Katzenmeier G; Angsuthanasombat C Biochem Biophys Res Commun; 2015 May; 461(2):300-6. PubMed ID: 25871797 [TBL] [Abstract][Full Text] [Related]
35. Proteomic identification of Bacillus thuringiensis subsp. israelensis toxin Cry4Ba binding proteins in midgut membranes from Aedes (Stegomyia) aegypti Linnaeus (Diptera, Culicidae) larvae. Bayyareddy K; Andacht TM; Abdullah MA; Adang MJ Insect Biochem Mol Biol; 2009 Apr; 39(4):279-86. PubMed ID: 19272330 [TBL] [Abstract][Full Text] [Related]
37. Pre-selecting resistance against individual Bti Cry toxins facilitates the development of resistance to the Bti toxins cocktail. Stalinski R; Tetreau G; Gaude T; Després L J Invertebr Pathol; 2014 Jun; 119():50-3. PubMed ID: 24768915 [TBL] [Abstract][Full Text] [Related]
38. In vivo identification of Bacillus thuringiensis Cry4Ba toxin receptors by RNA interference knockdown of glycosylphosphatidylinositol-linked aminopeptidase N transcripts in Aedes aegypti larvae. Saengwiman S; Aroonkesorn A; Dedvisitsakul P; Sakdee S; Leetachewa S; Angsuthanasombat C; Pootanakit K Biochem Biophys Res Commun; 2011 Apr; 407(4):708-13. PubMed ID: 21439264 [TBL] [Abstract][Full Text] [Related]
39. The mitogen-activated protein kinase p38 is involved in insect defense against Cry toxins from Bacillus thuringiensis. Cancino-Rodezno A; Alexander C; Villaseñor R; Pacheco S; Porta H; Pauchet Y; Soberón M; Gill SS; Bravo A Insect Biochem Mol Biol; 2010 Jan; 40(1):58-63. PubMed ID: 20040372 [TBL] [Abstract][Full Text] [Related]