These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
675 related articles for article (PubMed ID: 31339693)
1. Carbon-13 NMR Chemical Shift: A Descriptor for Electronic Structure and Reactivity of Organometallic Compounds. Gordon CP; Raynaud C; Andersen RA; Copéret C; Eisenstein O Acc Chem Res; 2019 Aug; 52(8):2278-2289. PubMed ID: 31339693 [TBL] [Abstract][Full Text] [Related]
2. Metal alkyls programmed to generate metal alkylidenes by α-H abstraction: prognosis from NMR chemical shift. Gordon CP; Yamamoto K; Searles K; Shirase S; Andersen RA; Eisenstein O; Copéret C Chem Sci; 2018 Feb; 9(7):1912-1918. PubMed ID: 29675237 [TBL] [Abstract][Full Text] [Related]
3. NMR chemical shift analysis decodes olefin oligo- and polymerization activity of d Gordon CP; Shirase S; Yamamoto K; Andersen RA; Eisenstein O; Copéret C Proc Natl Acad Sci U S A; 2018 Jun; 115(26):E5867-E5876. PubMed ID: 29891699 [TBL] [Abstract][Full Text] [Related]
4. Elucidating the Link between NMR Chemical Shifts and Electronic Structure in d(0) Olefin Metathesis Catalysts. Halbert S; Copéret C; Raynaud C; Eisenstein O J Am Chem Soc; 2016 Feb; 138(7):2261-72. PubMed ID: 26787258 [TBL] [Abstract][Full Text] [Related]
5. Metathesis Activity Encoded in the Metallacyclobutane Carbon-13 NMR Chemical Shift Tensors. Gordon CP; Yamamoto K; Liao WC; Allouche F; Andersen RA; Copéret C; Raynaud C; Eisenstein O ACS Cent Sci; 2017 Jul; 3(7):759-768. PubMed ID: 28776018 [TBL] [Abstract][Full Text] [Related]
6. π-Bond Character in Metal-Alkyl Compounds for C-H Activation: How, When, and Why? Gordon CP; Culver DB; Conley MP; Eisenstein O; Andersen RA; Copéret C J Am Chem Soc; 2019 Jan; 141(1):648-656. PubMed ID: 30525557 [TBL] [Abstract][Full Text] [Related]
7. Metal Alkyls with Alkylidynic Metal-Carbon Bond Character: Key Electronic Structures in Alkane Metathesis Precatalysts. Gordon CP; Copéret C Angew Chem Int Ed Engl; 2020 Apr; 59(18):7035-7041. PubMed ID: 32026552 [TBL] [Abstract][Full Text] [Related]
8. Orbital Analysis of Carbon-13 Chemical Shift Tensors Reveals Patterns to Distinguish Fischer and Schrock Carbenes. Yamamoto K; Gordon CP; Liao WC; Copéret C; Raynaud C; Eisenstein O Angew Chem Int Ed Engl; 2017 Aug; 56(34):10127-10131. PubMed ID: 28590040 [TBL] [Abstract][Full Text] [Related]
9. Metal complexes containing allenylidene and higher cumulenylidene ligands: a theoretical perspective. Coletti C; Marrone A; Re N Acc Chem Res; 2012 Feb; 45(2):139-49. PubMed ID: 21899273 [TBL] [Abstract][Full Text] [Related]
10. Linking the Character of the Metal-Ligand Bond to the Ligand NMR Shielding in Transition-Metal Complexes: NMR Contributions from Spin-Orbit Coupling. Novotný J; Vícha J; Bora PL; Repisky M; Straka M; Komorovsky S; Marek R J Chem Theory Comput; 2017 Aug; 13(8):3586-3601. PubMed ID: 28682632 [TBL] [Abstract][Full Text] [Related]
11. Partial Double Metal-Carbon Bonding Model in Transition Metal Methyl Compounds. Lin X; Mo Y Inorg Chem; 2022 Feb; 61(6):2892-2902. PubMed ID: 35104122 [TBL] [Abstract][Full Text] [Related]
12. Computation provides chemical insight into the diverse hydride NMR chemical shifts of [Ru(NHC) Häller LJ; Mas-Marzá E; Cybulski MK; Sanguramath RA; Macgregor SA; Mahon MF; Raynaud C; Russell CA; Whittlesey MK Dalton Trans; 2017 Feb; 46(9):2861-2873. PubMed ID: 28245022 [TBL] [Abstract][Full Text] [Related]
13. Molecular and supported Ti(iii)-alkyls: efficient ethylene polymerization driven by the π-character of metal-carbon bonds and back donation from a singly occupied molecular orbital. Ashuiev A; Allouche F; Wili N; Searles K; Klose D; Copéret C; Jeschke G Chem Sci; 2020 Nov; 12(2):780-792. PubMed ID: 34163812 [TBL] [Abstract][Full Text] [Related]
14. Probing hydrogen bonding and ion-carbonyl interactions by solid-state 17O NMR spectroscopy: G-ribbon and G-quartet. Kwan IC; Mo X; Wu G J Am Chem Soc; 2007 Feb; 129(8):2398-407. PubMed ID: 17269776 [TBL] [Abstract][Full Text] [Related]
15. DFT calculations of d0 M(NR)(CHtBu)(X)(Y) (M = Mo, W; R = CPh3, 2,6-iPr-C6H3; X and Y = CH2tBu, OtBu, OSi(OtBu)3) olefin metathesis catalysts: structural, spectroscopic and electronic properties. Poater A; Solans-Monfort X; Clot E; Copéret C; Eisenstein O Dalton Trans; 2006 Jul; (25):3077-87. PubMed ID: 16786066 [TBL] [Abstract][Full Text] [Related]
16. Origin of Reactivity Trends of an Elusive Metathesis Intermediate from NMR Chemical Shift Analysis of Surrogate Analogues. Kakiuchi Y; Docherty SR; Berkson ZJ; Yakimov AV; Wörle M; Copéret C; Aghazada S J Am Chem Soc; 2024 Jul; 146(29):20168-20182. PubMed ID: 38980045 [TBL] [Abstract][Full Text] [Related]
19. Solid-state NMR spectra and long intradimer bonds in the pi-[TCNE]22- dianion. Strohmeier M; Barich DH; Grant DM; Miller JS; Pugmire RJ; Simons J J Phys Chem A; 2006 Jun; 110(25):7962-9. PubMed ID: 16789786 [TBL] [Abstract][Full Text] [Related]
20. Origin of the conformational modulation of the 13C NMR chemical shift of methoxy groups in aromatic natural compounds. Toušek J; Straka M; Sklenář V; Marek R J Phys Chem A; 2013 Jan; 117(3):661-9. PubMed ID: 23270456 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]