BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

661 related articles for article (PubMed ID: 31339693)

  • 1. Carbon-13 NMR Chemical Shift: A Descriptor for Electronic Structure and Reactivity of Organometallic Compounds.
    Gordon CP; Raynaud C; Andersen RA; Copéret C; Eisenstein O
    Acc Chem Res; 2019 Aug; 52(8):2278-2289. PubMed ID: 31339693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal alkyls programmed to generate metal alkylidenes by α-H abstraction: prognosis from NMR chemical shift.
    Gordon CP; Yamamoto K; Searles K; Shirase S; Andersen RA; Eisenstein O; Copéret C
    Chem Sci; 2018 Feb; 9(7):1912-1918. PubMed ID: 29675237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR chemical shift analysis decodes olefin oligo- and polymerization activity of d
    Gordon CP; Shirase S; Yamamoto K; Andersen RA; Eisenstein O; Copéret C
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):E5867-E5876. PubMed ID: 29891699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elucidating the Link between NMR Chemical Shifts and Electronic Structure in d(0) Olefin Metathesis Catalysts.
    Halbert S; Copéret C; Raynaud C; Eisenstein O
    J Am Chem Soc; 2016 Feb; 138(7):2261-72. PubMed ID: 26787258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metathesis Activity Encoded in the Metallacyclobutane Carbon-13 NMR Chemical Shift Tensors.
    Gordon CP; Yamamoto K; Liao WC; Allouche F; Andersen RA; Copéret C; Raynaud C; Eisenstein O
    ACS Cent Sci; 2017 Jul; 3(7):759-768. PubMed ID: 28776018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. π-Bond Character in Metal-Alkyl Compounds for C-H Activation: How, When, and Why?
    Gordon CP; Culver DB; Conley MP; Eisenstein O; Andersen RA; Copéret C
    J Am Chem Soc; 2019 Jan; 141(1):648-656. PubMed ID: 30525557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal Alkyls with Alkylidynic Metal-Carbon Bond Character: Key Electronic Structures in Alkane Metathesis Precatalysts.
    Gordon CP; Copéret C
    Angew Chem Int Ed Engl; 2020 Apr; 59(18):7035-7041. PubMed ID: 32026552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orbital Analysis of Carbon-13 Chemical Shift Tensors Reveals Patterns to Distinguish Fischer and Schrock Carbenes.
    Yamamoto K; Gordon CP; Liao WC; Copéret C; Raynaud C; Eisenstein O
    Angew Chem Int Ed Engl; 2017 Aug; 56(34):10127-10131. PubMed ID: 28590040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal complexes containing allenylidene and higher cumulenylidene ligands: a theoretical perspective.
    Coletti C; Marrone A; Re N
    Acc Chem Res; 2012 Feb; 45(2):139-49. PubMed ID: 21899273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linking the Character of the Metal-Ligand Bond to the Ligand NMR Shielding in Transition-Metal Complexes: NMR Contributions from Spin-Orbit Coupling.
    Novotný J; Vícha J; Bora PL; Repisky M; Straka M; Komorovsky S; Marek R
    J Chem Theory Comput; 2017 Aug; 13(8):3586-3601. PubMed ID: 28682632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partial Double Metal-Carbon Bonding Model in Transition Metal Methyl Compounds.
    Lin X; Mo Y
    Inorg Chem; 2022 Feb; 61(6):2892-2902. PubMed ID: 35104122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computation provides chemical insight into the diverse hydride NMR chemical shifts of [Ru(NHC)
    Häller LJ; Mas-Marzá E; Cybulski MK; Sanguramath RA; Macgregor SA; Mahon MF; Raynaud C; Russell CA; Whittlesey MK
    Dalton Trans; 2017 Feb; 46(9):2861-2873. PubMed ID: 28245022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular and supported Ti(iii)-alkyls: efficient ethylene polymerization driven by the π-character of metal-carbon bonds and back donation from a singly occupied molecular orbital.
    Ashuiev A; Allouche F; Wili N; Searles K; Klose D; Copéret C; Jeschke G
    Chem Sci; 2020 Nov; 12(2):780-792. PubMed ID: 34163812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing hydrogen bonding and ion-carbonyl interactions by solid-state 17O NMR spectroscopy: G-ribbon and G-quartet.
    Kwan IC; Mo X; Wu G
    J Am Chem Soc; 2007 Feb; 129(8):2398-407. PubMed ID: 17269776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DFT calculations of d0 M(NR)(CHtBu)(X)(Y) (M = Mo, W; R = CPh3, 2,6-iPr-C6H3; X and Y = CH2tBu, OtBu, OSi(OtBu)3) olefin metathesis catalysts: structural, spectroscopic and electronic properties.
    Poater A; Solans-Monfort X; Clot E; Copéret C; Eisenstein O
    Dalton Trans; 2006 Jul; (25):3077-87. PubMed ID: 16786066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid-State
    Castro AC; Cascella M; Perutz RN; Raynaud C; Eisenstein O
    Inorg Chem; 2023 Mar; 62(12):4835-4846. PubMed ID: 36920236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scandium Terminal Imido Chemistry.
    Lu E; Chu J; Chen Y
    Acc Chem Res; 2018 Feb; 51(2):557-566. PubMed ID: 29381048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid-state NMR spectra and long intradimer bonds in the pi-[TCNE]22- dianion.
    Strohmeier M; Barich DH; Grant DM; Miller JS; Pugmire RJ; Simons J
    J Phys Chem A; 2006 Jun; 110(25):7962-9. PubMed ID: 16789786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of the conformational modulation of the 13C NMR chemical shift of methoxy groups in aromatic natural compounds.
    Toušek J; Straka M; Sklenář V; Marek R
    J Phys Chem A; 2013 Jan; 117(3):661-9. PubMed ID: 23270456
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Baker CF; Seed JA; Adams RW; Lee D; Liddle ST
    Chem Sci; 2023 Dec; 15(1):238-249. PubMed ID: 38131084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.