These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Superessential reactions in metabolic networks. Barve A; Rodrigues JF; Wagner A Proc Natl Acad Sci U S A; 2012 May; 109(18):E1121-30. PubMed ID: 22509034 [TBL] [Abstract][Full Text] [Related]
3. Phenotypic constraints promote latent versatility and carbon efficiency in metabolic networks. Bardoscia M; Marsili M; Samal A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012809. PubMed ID: 26274227 [TBL] [Abstract][Full Text] [Related]
4. A gap-filling algorithm for prediction of metabolic interactions in microbial communities. Giannari D; Ho CH; Mahadevan R PLoS Comput Biol; 2021 Nov; 17(11):e1009060. PubMed ID: 34723959 [TBL] [Abstract][Full Text] [Related]
5. Adaptation of metabolite leakiness leads to symbiotic chemical exchange and to a resilient microbial ecosystem. Yamagishi JF; Saito N; Kaneko K PLoS Comput Biol; 2021 Jun; 17(6):e1009143. PubMed ID: 34161322 [TBL] [Abstract][Full Text] [Related]
6. Environmental versatility promotes modularity in genome-scale metabolic networks. Samal A; Wagner A; Martin OC BMC Syst Biol; 2011 Aug; 5():135. PubMed ID: 21864340 [TBL] [Abstract][Full Text] [Related]
7. Genotype networks in metabolic reaction spaces. Samal A; Matias Rodrigues JF; Jost J; Martin OC; Wagner A BMC Syst Biol; 2010 Mar; 4():30. PubMed ID: 20302636 [TBL] [Abstract][Full Text] [Related]
8. A latent capacity for evolutionary innovation through exaptation in metabolic systems. Barve A; Wagner A Nature; 2013 Aug; 500(7461):203-6. PubMed ID: 23851393 [TBL] [Abstract][Full Text] [Related]
9. An enormous potential for niche construction through bacterial cross-feeding in a homogeneous environment. San Roman M; Wagner A PLoS Comput Biol; 2018 Jul; 14(7):e1006340. PubMed ID: 30040834 [TBL] [Abstract][Full Text] [Related]
10. Enhanced metabolic entanglement emerges during the evolution of an interkingdom microbial community. Scarinci G; Ariens JL; Angelidou G; Schmidt S; Glatter T; Paczia N; Sourjik V Nat Commun; 2024 Aug; 15(1):7238. PubMed ID: 39174531 [TBL] [Abstract][Full Text] [Related]
11. Metaproteomics method to determine carbon sources and assimilation pathways of species in microbial communities. Kleiner M; Dong X; Hinzke T; Wippler J; Thorson E; Mayer B; Strous M Proc Natl Acad Sci U S A; 2018 Jun; 115(24):E5576-E5584. PubMed ID: 29844191 [TBL] [Abstract][Full Text] [Related]
12. The potential for non-adaptive origins of evolutionary innovations in central carbon metabolism. Hosseini SR; Wagner A BMC Syst Biol; 2016 Oct; 10(1):97. PubMed ID: 27769243 [TBL] [Abstract][Full Text] [Related]
13. An algorithm for the reduction of genome-scale metabolic network models to meaningful core models. Erdrich P; Steuer R; Klamt S BMC Syst Biol; 2015 Aug; 9():48. PubMed ID: 26286864 [TBL] [Abstract][Full Text] [Related]
14. Evolutionary plasticity and innovations in complex metabolic reaction networks. Matias Rodrigues JF; Wagner A PLoS Comput Biol; 2009 Dec; 5(12):e1000613. PubMed ID: 20019795 [TBL] [Abstract][Full Text] [Related]
15. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Zelezniak A; Andrejev S; Ponomarova O; Mende DR; Bork P; Patil KR Proc Natl Acad Sci U S A; 2015 May; 112(20):6449-54. PubMed ID: 25941371 [TBL] [Abstract][Full Text] [Related]
16. RedCom: A strategy for reduced metabolic modeling of complex microbial communities and its application for analyzing experimental datasets from anaerobic digestion. Koch S; Kohrs F; Lahmann P; Bissinger T; Wendschuh S; Benndorf D; Reichl U; Klamt S PLoS Comput Biol; 2019 Feb; 15(2):e1006759. PubMed ID: 30707687 [TBL] [Abstract][Full Text] [Related]
17. Historical contingency and the gradual evolution of metabolic properties in central carbon and genome-scale metabolisms. Barve A; Hosseini SR; Martin OC; Wagner A BMC Syst Biol; 2014 Apr; 8():48. PubMed ID: 24758311 [TBL] [Abstract][Full Text] [Related]
18. Contingent evolution of alternative metabolic network topologies determines whether cross-feeding evolves. Meijer J; van Dijk B; Hogeweg P Commun Biol; 2020 Jul; 3(1):401. PubMed ID: 32728180 [TBL] [Abstract][Full Text] [Related]
19. Symbiosis as a general principle in eukaryotic evolution. Douglas AE Cold Spring Harb Perspect Biol; 2014 Feb; 6(2):. PubMed ID: 24492707 [TBL] [Abstract][Full Text] [Related]
20. Constraint and Contingency Pervade the Emergence of Novel Phenotypes in Complex Metabolic Systems. Hosseini SR; Wagner A Biophys J; 2017 Aug; 113(3):690-701. PubMed ID: 28793223 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]