These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 31339881)

  • 1. Turing-like mechanism in a stochastic reaction-diffusion model recreates three dimensional vascular patterning of plant stems.
    Hearn DJ
    PLoS One; 2019; 14(7):e0219055. PubMed ID: 31339881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Populus class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems.
    Robischon M; Du J; Miura E; Groover A
    Plant Physiol; 2011 Mar; 155(3):1214-25. PubMed ID: 21205615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small but thick enough--the Arabidopsis hypocotyl as a model to study secondary growth.
    Ragni L; Hardtke CS
    Physiol Plant; 2014 Jun; 151(2):164-71. PubMed ID: 24128126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic and hormonal regulation of cambial development.
    Ursache R; Nieminen K; Helariutta Y
    Physiol Plant; 2013 Jan; 147(1):36-45. PubMed ID: 22551327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rays, intrusive growth, and storied cambium in the inflorescence stems of Arabidopsis thaliana (L.) Heynh.
    Mazur E; Kurczynska EU
    Protoplasma; 2012 Jan; 249(1):217-20. PubMed ID: 21311923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic Networks in Plant Vascular Development.
    Ruonala R; Ko D; Helariutta Y
    Annu Rev Genet; 2017 Nov; 51():335-359. PubMed ID: 28892639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The BOP-type co-transcriptional regulator NODULE ROOT1 promotes stem secondary growth of the tropical Cannabaceae tree Parasponia andersonii.
    Shen D; Holmer R; Kulikova O; Mannapperuma C; Street NR; Yan Z; van der Maden T; Bu F; Zhang Y; Geurts R; Magne K
    Plant J; 2021 Jun; 106(5):1366-1386. PubMed ID: 33735477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell-to-cell movement of two interacting AT-hook factors in Arabidopsis root vascular tissue patterning.
    Zhou J; Wang X; Lee JY; Lee JY
    Plant Cell; 2013 Jan; 25(1):187-201. PubMed ID: 23335615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue regeneration after bark girdling: an ideal research tool to investigate plant vascular development and regeneration.
    Chen JJ; Zhang J; He XQ
    Physiol Plant; 2014 Jun; 151(2):147-55. PubMed ID: 24111607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intercellular trafficking of transcription factors in the vascular tissue patterning.
    Jang G; Lee JY
    Physiol Plant; 2014 Jun; 151(2):184-91. PubMed ID: 24329715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental patterns in anatomy are shared among separate evolutionary origins of stem succulent and storage root-bearing growth habits in Adenia (Passifloraceae).
    Hearn DJ
    Am J Bot; 2009 Nov; 96(11):1941-56. PubMed ID: 21622314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long- and short-distance signaling in the regulation of lateral plant growth.
    Brackmann K; Greb T
    Physiol Plant; 2014 Jun; 151(2):134-41. PubMed ID: 24053438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of cell-fate determination and patterning in the vascular bundles of Arabidopsis thaliana.
    Benítez M; Hejátko J
    PLoS One; 2013; 8(5):e63108. PubMed ID: 23723973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auxin-responsive DR5 promoter coupled with transport assays suggest separate but linked routes of auxin transport during woody stem development in Populus.
    Spicer R; Tisdale-Orr T; Talavera C
    PLoS One; 2013; 8(8):e72499. PubMed ID: 23977308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide direct target analysis reveals a role for SHORT-ROOT in root vascular patterning through cytokinin homeostasis.
    Cui H; Hao Y; Kovtun M; Stolc V; Deng XW; Sakakibara H; Kojima M
    Plant Physiol; 2011 Nov; 157(3):1221-31. PubMed ID: 21951467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of Oriented Tissue Growth through Repression of Organ Boundary Genes Promotes Stem Morphogenesis.
    Bencivenga S; Serrano-Mislata A; Bush M; Fox S; Sablowski R
    Dev Cell; 2016 Oct; 39(2):198-208. PubMed ID: 27666746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant development. Integration of growth and patterning during vascular tissue formation in Arabidopsis.
    De Rybel B; Adibi M; Breda AS; Wendrich JR; Smit ME; Novák O; Yamaguchi N; Yoshida S; Van Isterdael G; Palovaara J; Nijsse B; Boekschoten MV; Hooiveld G; Beeckman T; Wagner D; Ljung K; Fleck C; Weijers D
    Science; 2014 Aug; 345(6197):1255215. PubMed ID: 25104393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vascular development in Arabidopsis.
    Ye ZH; Freshour G; Hahn MG; Burk DH; Zhong R
    Int Rev Cytol; 2002; 220():225-56. PubMed ID: 12224550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A core mechanism for specifying root vascular patterning can replicate the anatomical variation seen in diverse plant species.
    Mellor N; Vaughan-Hirsch J; Kümpers BMC; Help-Rinta-Rahko H; Miyashima S; Mähönen AP; Campilho A; King JR; Bishopp A
    Development; 2019 Mar; 146(6):. PubMed ID: 30858228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parsimonious Model of Vascular Patterning Links Transverse Hormone Fluxes to Lateral Root Initiation: Auxin Leads the Way, while Cytokinin Levels Out.
    el-Showk S; Help-Rinta-Rahko H; Blomster T; Siligato R; Marée AF; Mähönen AP; Grieneisen VA
    PLoS Comput Biol; 2015 Oct; 11(10):e1004450. PubMed ID: 26505899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.