These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31340000)

  • 41. Functional analysis of FRIGIDA using naturally occurring variation in Arabidopsis thaliana.
    Zhang L; Jiménez-Gómez JM
    Plant J; 2020 Jul; 103(1):154-165. PubMed ID: 32022960
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A latitudinal cline in flowering time in Arabidopsis thaliana modulated by the flowering time gene FRIGIDA.
    Stinchcombe JR; Weinig C; Ungerer M; Olsen KM; Mays C; Halldorsdottir SS; Purugganan MD; Schmitt J
    Proc Natl Acad Sci U S A; 2004 Mar; 101(13):4712-7. PubMed ID: 15070783
    [TBL] [Abstract][Full Text] [Related]  

  • 43. FRIGIDA-related genes are required for the winter-annual habit in Arabidopsis.
    Michaels SD; Bezerra IC; Amasino RM
    Proc Natl Acad Sci U S A; 2004 Mar; 101(9):3281-5. PubMed ID: 14973192
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reduction of the geomagnetic field delays Arabidopsis thaliana flowering time through downregulation of flowering-related genes.
    Agliassa C; Narayana R; Bertea CM; Rodgers CT; Maffei ME
    Bioelectromagnetics; 2018 Jul; 39(5):361-374. PubMed ID: 29709075
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interaction between the light quality and flowering time pathways in Arabidopsis.
    Adams S; Allen T; Whitelam GC
    Plant J; 2009 Oct; 60(2):257-67. PubMed ID: 19563438
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Standing genetic variation in FRIGIDA mediates experimental evolution of flowering time in Arabidopsis.
    Scarcelli N; Kover PX
    Mol Ecol; 2009 May; 18(9):2039-49. PubMed ID: 19317844
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation.
    Werner JD; Borevitz JO; Warthmann N; Trainer GT; Ecker JR; Chory J; Weigel D
    Proc Natl Acad Sci U S A; 2005 Feb; 102(7):2460-5. PubMed ID: 15695584
    [TBL] [Abstract][Full Text] [Related]  

  • 48. ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis FLOWERING LOCUS C transcription.
    Shu K; Chen Q; Wu Y; Liu R; Zhang H; Wang S; Tang S; Yang W; Xie Q
    J Exp Bot; 2016 Jan; 67(1):195-205. PubMed ID: 26507894
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Brassinosteroid Signaling Recruits Histone 3 Lysine-27 Demethylation Activity to FLOWERING LOCUS C Chromatin to Inhibit the Floral Transition in Arabidopsis.
    Li Z; Ou Y; Zhang Z; Li J; He Y
    Mol Plant; 2018 Sep; 11(9):1135-1146. PubMed ID: 29969683
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Epistatic interaction between Arabidopsis FRI and FLC flowering time genes generates a latitudinal cline in a life history trait.
    Caicedo AL; Stinchcombe JR; Olsen KM; Schmitt J; Purugganan MD
    Proc Natl Acad Sci U S A; 2004 Nov; 101(44):15670-5. PubMed ID: 15505218
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fitness effects associated with the major flowering time gene FRIGIDA in Arabidopsis thaliana in the field.
    Korves TM; Schmid KJ; Caicedo AL; Mays C; Stinchcombe JR; Purugganan MD; Schmitt J
    Am Nat; 2007 May; 169(5):E141-57. PubMed ID: 17427127
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The sugar transporter SWEET10 acts downstream of FLOWERING LOCUS T during floral transition of Arabidopsis thaliana.
    Andrés F; Kinoshita A; Kalluri N; Fernández V; Falavigna VS; Cruz TMD; Jang S; Chiba Y; Seo M; Mettler-Altmann T; Huettel B; Coupland G
    BMC Plant Biol; 2020 Feb; 20(1):53. PubMed ID: 32013867
    [TBL] [Abstract][Full Text] [Related]  

  • 53. PIE1, an ISWI family gene, is required for FLC activation and floral repression in Arabidopsis.
    Noh YS; Amasino RM
    Plant Cell; 2003 Jul; 15(7):1671-82. PubMed ID: 12837955
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functional FRIGIDA allele enhances drought tolerance by regulating the P5CS1 pathway in Arabidopsis thaliana.
    Chen Q; Zheng Y; Luo L; Yang Y; Hu X; Kong X
    Biochem Biophys Res Commun; 2018 Jan; 495(1):1102-1107. PubMed ID: 29175388
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The putative PRC1 RING-finger protein AtRING1A regulates flowering through repressing MADS AFFECTING FLOWERING genes in Arabidopsis.
    Shen L; Thong Z; Gong X; Shen Q; Gan Y; Yu H
    Development; 2014 Mar; 141(6):1303-12. PubMed ID: 24553292
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The histone variant H3.3 promotes the active chromatin state to repress flowering in Arabidopsis.
    Zhao F; Zhang H; Zhao T; Li Z; Jiang D
    Plant Physiol; 2021 Aug; 186(4):2051-2063. PubMed ID: 34618105
    [TBL] [Abstract][Full Text] [Related]  

  • 57. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering.
    Michaels SD; Amasino RM
    Plant Cell; 1999 May; 11(5):949-56. PubMed ID: 10330478
    [TBL] [Abstract][Full Text] [Related]  

  • 58. DEK domain-containing proteins control flowering time in Arabidopsis.
    Zong W; Zhao B; Xi Y; Bordiya Y; Mun H; Cerda NA; Kim DH; Sung S
    New Phytol; 2021 Jul; 231(1):182-192. PubMed ID: 33774831
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Vernalization attenuates dehydration tolerance in winter-annual Arabidopsis.
    Chen L; Hu P; Lu Q; Zhang F; Su Y; Ding Y
    Plant Physiol; 2022 Aug; 190(1):732-744. PubMed ID: 35670724
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Overexpression of TCP8 delays Arabidopsis flowering through a FLOWERING LOCUS C-dependent pathway.
    Wang X; Xu X; Mo X; Zhong L; Zhang J; Mo B; Kuai B
    BMC Plant Biol; 2019 Dec; 19(1):534. PubMed ID: 31795938
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.