These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31340005)

  • 1. Photoactive yellow protein and its chemical probes: an approach to protein labelling in living cells.
    Kumar N; Hori Y; Kikuchi K
    J Biochem; 2019 Aug; 166(2):121-127. PubMed ID: 31340005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoactive yellow protein-based protein labeling system with turn-on fluorescence intensity.
    Hori Y; Ueno H; Mizukami S; Kikuchi K
    J Am Chem Soc; 2009 Nov; 131(46):16610-1. PubMed ID: 19877615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small Molecule-Photoactive Yellow Protein Labeling Technology in Live Cell Imaging.
    Gao F; Gao T; Zhou K; Zeng W
    Molecules; 2016 Aug; 21(9):. PubMed ID: 27589715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Fluorogenic Probes for Rapid High-Contrast Imaging of Transient Nuclear Localization of Sirtuin 3.
    Gao J; Hori Y; Shimomura T; Bordy M; Hasserodt J; Kikuchi K
    Chembiochem; 2020 Mar; 21(5):656-662. PubMed ID: 31518474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small-molecule-based protein-labeling technology in live cell studies: probe-design concepts and applications.
    Mizukami S; Hori Y; Kikuchi K
    Acc Chem Res; 2014 Jan; 47(1):247-56. PubMed ID: 23927788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of fluorogenic probes for quick no-wash live-cell imaging of intracellular proteins.
    Hori Y; Norinobu T; Sato M; Arita K; Shirakawa M; Kikuchi K
    J Am Chem Soc; 2013 Aug; 135(33):12360-5. PubMed ID: 23927377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of cyanine probes with dinitrobenzene quencher for rapid fluorogenic protein labelling.
    Hori Y; Hirayama S; Kikuchi K
    Philos Trans A Math Phys Eng Sci; 2017 Nov; 375(2107):. PubMed ID: 29038376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an effective protein-labeling system based on smart fluorogenic probes.
    Reja SI; Minoshima M; Hori Y; Kikuchi K
    J Biol Inorg Chem; 2019 Jun; 24(4):443-455. PubMed ID: 31152238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visible-light-induced photodimerization of a photoactive yellow protein (PYP) chromophore model in a single crystal.
    Nath NK; Manoj K; Gâz AŞ; Naumov P
    Chemistry; 2013 Jun; 19(25):8094-9. PubMed ID: 23616177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of protein-labeling probes with a redesigned fluorogenic switch based on intramolecular association for no-wash live-cell imaging.
    Hori Y; Nakaki K; Sato M; Mizukami S; Kikuchi K
    Angew Chem Int Ed Engl; 2012 Jun; 51(23):5611-4. PubMed ID: 22535647
    [No Abstract]   [Full Text] [Related]  

  • 11. Vibrational assignment of the 4-hydroxycinnamyl chromophore in photoactive yellow protein.
    Unno M; Kumauchi M; Tokunaga F; Yamauchi S
    J Phys Chem B; 2007 Mar; 111(10):2719-26. PubMed ID: 17311445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling the similarity of the photoabsorption of deprotonated p-coumaric acid in the gas phase and within the photoactive yellow protein.
    Rocha-Rinza T; Sneskov K; Christiansen O; Ryde U; Kongsted J
    Phys Chem Chem Phys; 2011 Jan; 13(4):1585-9. PubMed ID: 21132197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photo Control of Protein Function Using Photoactive Yellow Protein.
    Reis JM; Woolley GA
    Methods Mol Biol; 2016; 1408():79-92. PubMed ID: 26965117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The design, synthesis and photochemical study of a biomimetic cyclodextrin model of photoactive yellow protein (PYP).
    Loukou C; Changenet-Barret P; Rager MN; Plaza P; Martin MM; Mallet JM
    Org Biomol Chem; 2011 Apr; 9(7):2209-18. PubMed ID: 21301710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic structure and dynamics of torsion-locked photoactive yellow protein chromophores.
    Henley A; Diveky ME; Patel AM; Parkes MA; Anderson JC; Fielding HH
    Phys Chem Chem Phys; 2017 Dec; 19(47):31572-31580. PubMed ID: 29165495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Communication maps of vibrational energy transport through Photoactive Yellow Protein.
    Xu Y; Leitner DM
    J Phys Chem A; 2014 Sep; 118(35):7280-7. PubMed ID: 24552496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical biology-based approaches on fluorescent labeling of proteins in live cells.
    Jung D; Min K; Jung J; Jang W; Kwon Y
    Mol Biosyst; 2013 May; 9(5):862-72. PubMed ID: 23318293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Photoisomerization on the Photodetachment of the Photoactive Yellow Protein Chromophore.
    Henley A; Patel AM; Parkes MA; Anderson JC; Fielding HH
    J Phys Chem A; 2018 Oct; 122(41):8222-8228. PubMed ID: 30234981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined probes of X-ray scattering and optical spectroscopy reveal how global conformational change is temporally and spatially linked to local structural perturbation in photoactive yellow protein.
    Kim TW; Yang C; Kim Y; Kim JG; Kim J; Jung YO; Jun S; Lee SJ; Park S; Kosheleva I; Henning R; van Thor JJ; Ihee H
    Phys Chem Chem Phys; 2016 Apr; 18(13):8911-8919. PubMed ID: 26960811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photocycle of Photoactive Yellow Protein in Cell-Mimetic Environments: Molecular Volume Changes and Kinetics.
    Yang C; Kim SO; Kim Y; Yun SR; Choi J; Ihee H
    J Phys Chem B; 2017 Feb; 121(4):769-779. PubMed ID: 28058827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.