BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 31340035)

  • 1. Nanobody stability engineering by employing the ΔTm shift; a comparison with apparent rate constants of heat-induced aggregation.
    Kunz P; Ortale A; Mücke N; Zinner K; Hoheisel JD
    Protein Eng Des Sel; 2019 Dec; 32(5):241-249. PubMed ID: 31340035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the Aggregation Propensity of Single-Domain Antibodies upon Heat-Denaturation Employing the ΔT
    Kunz P
    Methods Mol Biol; 2022; 2446():233-244. PubMed ID: 35157276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structural basis of nanobody unfolding reversibility and thermoresistance.
    Kunz P; Zinner K; Mücke N; Bartoschik T; Muyldermans S; Hoheisel JD
    Sci Rep; 2018 May; 8(1):7934. PubMed ID: 29784954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploiting sequence and stability information for directing nanobody stability engineering.
    Kunz P; Flock T; Soler N; Zaiss M; Vincke C; Sterckx Y; Kastelic D; Muyldermans S; Hoheisel JD
    Biochim Biophys Acta Gen Subj; 2017 Sep; 1861(9):2196-2205. PubMed ID: 28642127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Easily Established and Multifunctional Synthetic Nanobody Libraries as Research Tools.
    Liu B; Yang D
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positive charge in the complementarity-determining regions of synthetic nanobody prevents aggregation.
    Zhong Z; Yang Y; Chen X; Han Z; Zhou J; Li B; He X
    Biochem Biophys Res Commun; 2021 Oct; 572():1-6. PubMed ID: 34332323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of intra-domain disulfide bonds in heat-induced irreversible denaturation of camelid single domain VHH antibodies.
    Akazawa-Ogawa Y; Uegaki K; Hagihara Y
    J Biochem; 2016 Jan; 159(1):111-21. PubMed ID: 26289739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Immobilization of Engineered Nanobodies on Gold Sensors.
    Simões B; Guedens WJ; Keene C; Kubiak-Ossowska K; Mulheran P; Kotowska AM; Scurr DJ; Alexander MR; Broisat A; Johnson S; Muyldermans S; Devoogdt N; Adriaensens P; Mendes PM
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):17353-17360. PubMed ID: 33845569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of a noncanonical disulfide bond in the stability, affinity, and flexibility of a VHH specific for the Listeria virulence factor InlB.
    Mendoza MN; Jian M; King MT; Brooks CL
    Protein Sci; 2020 Apr; 29(4):1004-1017. PubMed ID: 31981247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat-induced irreversible denaturation of the camelid single domain VHH antibody is governed by chemical modifications.
    Akazawa-Ogawa Y; Takashima M; Lee YH; Ikegami T; Goto Y; Uegaki K; Hagihara Y
    J Biol Chem; 2014 May; 289(22):15666-79. PubMed ID: 24739391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrated computational pipeline for designing high-affinity nanobodies with expanded genetic codes.
    Padhi AK; Kumar A; Haruna KI; Sato H; Tamura H; Nagatoishi S; Tsumoto K; Yamaguchi A; Iraha F; Takahashi M; Sakamoto K; Zhang KYJ
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34415295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Useful Nanobodies by Phage Display of Immune Single Domain Libraries Derived from Camelid Heavy Chain Antibodies.
    Romao E; Morales-Yanez F; Hu Y; Crauwels M; De Pauw P; Hassanzadeh GG; Devoogdt N; Ackaert C; Vincke C; Muyldermans S
    Curr Pharm Des; 2016; 22(43):6500-6518. PubMed ID: 27669966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered high-affinity nanobodies recognizing staphylococcal Protein A and suitable for native isolation of protein complexes.
    Fridy PC; Thompson MK; Ketaren NE; Rout MP
    Anal Biochem; 2015 May; 477():92-4. PubMed ID: 25707320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and specificity of several triclocarban-binding single domain camelid antibody fragments.
    Tabares-da Rosa S; Wogulis LA; Wogulis MD; González-Sapienza G; Wilson DK
    J Mol Recognit; 2019 Jan; 32(1):e2755. PubMed ID: 30033524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Camelid single-domain antibody fragments: Uses and prospects to investigate protein misfolding and aggregation, and to treat diseases associated with these phenomena.
    Pain C; Dumont J; Dumoulin M
    Biochimie; 2015 Apr; 111():82-106. PubMed ID: 25656912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applications of nanobodies in plant science and biotechnology.
    Wang W; Yuan J; Jiang C
    Plant Mol Biol; 2021 Jan; 105(1-2):43-53. PubMed ID: 33037986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of single-domain antibodies with an engineered disulfide bond.
    Hussack G; Mackenzie CR; Tanha J
    Methods Mol Biol; 2012; 911():417-29. PubMed ID: 22886266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solubility and stability engineering of human VH domains.
    Kim DY; Ding W; Tanha J
    Methods Mol Biol; 2012; 911():355-72. PubMed ID: 22886262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold.
    Vincke C; Loris R; Saerens D; Martinez-Rodriguez S; Muyldermans S; Conrath K
    J Biol Chem; 2009 Jan; 284(5):3273-3284. PubMed ID: 19010777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fenobody: A Ferritin-Displayed Nanobody with High Apparent Affinity and Half-Life Extension.
    Fan K; Jiang B; Guan Z; He J; Yang D; Xie N; Nie G; Xie C; Yan X
    Anal Chem; 2018 May; 90(9):5671-5677. PubMed ID: 29634235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.