These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 31340120)

  • 1. Electrokinetic Size-Based Spatial Separation of Micro/Nanospheres Using Paper-Based 3D Origami Preconcentrator.
    Han SI; Lee D; Kim H; Yoo YK; Kim C; Lee J; Kim KH; Kim H; Lee D; Hwang KS; Yoon DS; Lee JH
    Anal Chem; 2019 Aug; 91(16):10744-10749. PubMed ID: 31340120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Paper-Based Preconcentration and Isolation of Microvesicles and Exosomes.
    Lee D; Wee KW; Kim H; Han SI; Kwak S; Yoon DS; Lee JH
    J Vis Exp; 2020 Apr; (158):. PubMed ID: 32420990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origami paper-based sample preconcentration using sequentially driven ion concentration polarization.
    Lee J; Yoo YK; Lee D; Kim C; Kim KH; Lee S; Kwak S; Kang JY; Kim H; Yoon DS; Hur D; Lee JH
    Lab Chip; 2021 Mar; 21(5):867-874. PubMed ID: 33507198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origami-paper-based device for microvesicle/exosome preconcentration and isolation.
    Kim H; Lee KH; Han SI; Lee D; Chung S; Lee D; Lee JH
    Lab Chip; 2019 Nov; 19(23):3917-3921. PubMed ID: 31650155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoelectrokinetic bufferchannel-less radial preconcentrator and online extractor by tunable ion depletion layer.
    Lee S; Park S; Kim W; Moon S; Kim HY; Lee H; Kim SJ
    Biomicrofluidics; 2019 May; 13(3):034113. PubMed ID: 31186822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of driftless preconcentration using ion concentration polarization leveraged by convection and diffusion.
    Baek S; Choi J; Son SY; Kim J; Hong S; Kim HC; Chae JH; Lee H; Kim SJ
    Lab Chip; 2019 Oct; 19(19):3190-3199. PubMed ID: 31475274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrokinetic sample preconcentration and hydrodynamic sample injection for microchip electrophoresis using a pneumatic microvalve.
    Cong Y; Katipamula S; Geng T; Prost SA; Tang K; Kelly RT
    Electrophoresis; 2016 Feb; 37(3):455-62. PubMed ID: 26255610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in paper-based preconcentrators by utilizing ion concentration polarization.
    Zhiyue M; Xichen Y; Li R; Yang Y; Huicheng F; Peng S
    Electrophoresis; 2021 Jul; 42(12-13):1340-1351. PubMed ID: 33768593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic paper-based biomolecule preconcentrator based on ion concentration polarization.
    Han SI; Hwang KS; Kwak R; Lee JH
    Lab Chip; 2016 Jun; 16(12):2219-27. PubMed ID: 27199301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [In situ photopolymerization of polyacrylamide-based preconcentrator on a microfluidic chip for capillary electrophoresis].
    Yamamoto S
    Yakugaku Zasshi; 2012; 132(9):1031-5. PubMed ID: 23023420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-line sample preconcentration and separation technique based on transient trapping in microchip micellar electrokinetic chromatography.
    Sueyoshi K; Kitagawa F; Otsuka K
    Anal Chem; 2008 Feb; 80(4):1255-62. PubMed ID: 18201071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Enclosed Paper Microfluidic Chip as a Sample Preconcentrator Based on Ion Concentration Polarization.
    Liu N; Phan DT; Lew WS
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1392-1399. PubMed ID: 28792905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient and scalable biomarker preconcentrator based on nanoelectrokinetics.
    Lee D; Lee JW; Kim C; Lee D; Chung S; Yoon DS; Lee JH
    Biosens Bioelectron; 2021 Mar; 176():112904. PubMed ID: 33349535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sweeping with electrokinetic injection and analyte focusing by micelle collapse in two-dimensional separation via integration of micellar electrokinetic chromatography with capillary zone electrophoresis.
    Zhang Z; Du X; Li X
    Anal Chem; 2011 Feb; 83(4):1291-9. PubMed ID: 21247064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A low sample volume particle separation device with electrokinetic pumping based on circular travelling-wave electroosmosis.
    Lin SC; Lu JC; Sung YL; Lin CT; Tung YC
    Lab Chip; 2013 Aug; 13(15):3082-9. PubMed ID: 23753015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies for the on-line preconcentration and separation of hypolipidaemic drugs using micellar electrokinetic chromatography.
    Dawod M; Breadmore MC; Guijt RM; Haddad PR
    J Chromatogr A; 2010 Jan; 1217(3):386-93. PubMed ID: 20015504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterned adhesive enables construction of nonplanar three-dimensional paper microfluidic circuits.
    Kalish B; Tsutsui H
    Lab Chip; 2014 Nov; 14(22):4354-61. PubMed ID: 25222567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D origami-based multifunction-integrated immunodevice: low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device.
    Ge L; Wang S; Song X; Ge S; Yu J
    Lab Chip; 2012 Sep; 12(17):3150-8. PubMed ID: 22763468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of microchannel geometry on preconcentration intensity in microfluidic chips with straight or convergent-divergent microchannels.
    Chen CL; Yang RJ
    Electrophoresis; 2012 Mar; 33(5):751-7. PubMed ID: 22522531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Online preconcentration and two-dimensional separation of cationic compounds via hyphenation of capillary zone electrophoresis with cyclodextrin-modified micellar electrokinetic capillary chromatography.
    Zhang ZX; Zhang MZ; Zhang SS
    Electrophoresis; 2009 Jun; 30(11):1958-66. PubMed ID: 19517436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.