These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31340379)

  • 1. A physiological perspective on targets of nitration in NO-based signaling networks in plants.
    Arasimowicz-Jelonek M; Floryszak-Wieczorek J
    J Exp Bot; 2019 Aug; 70(17):4379-4389. PubMed ID: 31340379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the fate of peroxynitrite in plant cells--from physiology to pathophysiology.
    Arasimowicz-Jelonek M; Floryszak-Wieczorek J
    Phytochemistry; 2011 Jun; 72(8):681-8. PubMed ID: 21429536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein Tyrosine Nitration in Plant Nitric Oxide Signaling.
    León J
    Front Plant Sci; 2022; 13():859374. PubMed ID: 35360296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S-nitrosylation.
    Begara-Morales JC; Sánchez-Calvo B; Chaki M; Mata-Pérez C; Valderrama R; Padilla MN; López-Jaramillo J; Luque F; Corpas FJ; Barroso JB
    J Exp Bot; 2015 Sep; 66(19):5983-96. PubMed ID: 26116026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of nitration during dark-induced leaf senescence in Arabidopsis reveals proteins modified by tryptophan nitration.
    Arasimowicz-Jelonek M; Jagodzik P; Płóciennik A; Sobieszczuk-Nowicka E; Mattoo A; Polcyn W; Floryszak-Wieczorek J
    J Exp Bot; 2022 Nov; 73(19):6853-6875. PubMed ID: 35981877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peroxynitrite formation and function in plants.
    Vandelle E; Delledonne M
    Plant Sci; 2011 Nov; 181(5):534-9. PubMed ID: 21893249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide, oxidants, and protein tyrosine nitration.
    Radi R
    Proc Natl Acad Sci U S A; 2004 Mar; 101(12):4003-8. PubMed ID: 15020765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein tyrosine nitration in plants: Present knowledge, computational prediction and future perspectives.
    Kolbert Z; Feigl G; Bordé Á; Molnár Á; Erdei L
    Plant Physiol Biochem; 2017 Apr; 113():56-63. PubMed ID: 28187345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of peroxisomal hydroxypyruvate reductase (HPR1) by tyrosine nitration.
    Corpas FJ; Leterrier M; Begara-Morales JC; Valderrama R; Chaki M; López-Jaramillo J; Luque F; Palma JM; Padilla MN; Sánchez-Calvo B; Mata-Pérez C; Barroso JB
    Biochim Biophys Acta; 2013 Nov; 1830(11):4981-9. PubMed ID: 23860243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein nitration as footprint of oxidative stress-related nitric oxide signaling pathways in developing Ciona intestinalis.
    Ercolesi E; Tedeschi G; Fiore G; Negri A; Maffioli E; d'Ischia M; Palumbo A
    Nitric Oxide; 2012 Jun; 27(1):18-24. PubMed ID: 22498777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tyrosine nitration in human spermatozoa: a physiological function of peroxynitrite, the reaction product of nitric oxide and superoxide.
    Herrero MB; de Lamirande E; Gagnon C
    Mol Hum Reprod; 2001 Oct; 7(10):913-21. PubMed ID: 11574660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein Tyrosine Nitration during Development and Abiotic Stress Response in Plants.
    Mata-Pérez C; Begara-Morales JC; Chaki M; Sánchez-Calvo B; Valderrama R; Padilla MN; Corpas FJ; Barroso JB
    Front Plant Sci; 2016; 7():1699. PubMed ID: 27895655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the anti-nitrative effect of plant antioxidants using a cowpea Fe-superoxide dismutase as a target.
    Urarte E; Asensio AC; Tellechea E; Pires L; Moran JF
    Plant Physiol Biochem; 2014 Oct; 83():356-64. PubMed ID: 25221924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyrosine-Nitrated Proteins: Proteomic and Bioanalytical Aspects.
    Batthyány C; Bartesaghi S; Mastrogiovanni M; Lima A; Demicheli V; Radi R
    Antioxid Redox Signal; 2017 Mar; 26(7):313-328. PubMed ID: 27324931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tyrosine nitration as a key event of signal transduction that regulates functional state of the cell.
    Sabadashka M; Nagalievska M; Sybirna N
    Cell Biol Int; 2021 Mar; 45(3):481-497. PubMed ID: 31908104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA and mRNA Nitration as a Novel Metabolic Link in Potato Immune Response to
    Izbiańska K; Floryszak-Wieczorek J; Gajewska J; Meller B; Kuźnicki D; Arasimowicz-Jelonek M
    Front Plant Sci; 2018; 9():672. PubMed ID: 29896206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrated Nucleotides: New Players in Signaling Pathways of Reactive Nitrogen and Oxygen Species in Plants.
    Petřivalský M; Luhová L
    Front Plant Sci; 2020; 11():598. PubMed ID: 32508862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants.
    Arora D; Jain P; Singh N; Kaur H; Bhatla SC
    Free Radic Res; 2016; 50(3):291-303. PubMed ID: 26554526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Tyrosine nitration as regulatory post-translational modification of proteins].
    Blium IaB; Krasylenko IuA; Iemets' AI
    Ukr Biokhim Zh (1999); 2009; 81(5):5-15. PubMed ID: 20387642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New insights into nitric oxide signaling in plants.
    Besson-Bard A; Pugin A; Wendehenne D
    Annu Rev Plant Biol; 2008; 59():21-39. PubMed ID: 18031216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.