These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31340379)

  • 21. Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress.
    Sami F; Faizan M; Faraz A; Siddiqui H; Yusuf M; Hayat S
    Nitric Oxide; 2018 Feb; 73():22-38. PubMed ID: 29275195
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tyrosine nitration by superoxide and nitric oxide fluxes in biological systems: modeling the impact of superoxide dismutase and nitric oxide diffusion.
    Quijano C; Romero N; Radi R
    Free Radic Biol Med; 2005 Sep; 39(6):728-41. PubMed ID: 16109303
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein tyrosine nitration in higher plants grown under natural and stress conditions.
    Corpas FJ; Palma JM; Del Río LA; Barroso JB
    Front Plant Sci; 2013; 4():29. PubMed ID: 23444154
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidative stress and protein aggregation during biological aging.
    Squier TC
    Exp Gerontol; 2001 Sep; 36(9):1539-50. PubMed ID: 11525876
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nitric oxide signaling and its crosstalk with other plant growth regulators in plant responses to abiotic stress.
    Asgher M; Per TS; Masood A; Fatma M; Freschi L; Corpas FJ; Khan NA
    Environ Sci Pollut Res Int; 2017 Jan; 24(3):2273-2285. PubMed ID: 27812964
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein Tyrosine Nitration in Lung Cancer: Current Research Status and Future Perspectives.
    Zhan X; Huang Y; Qian S
    Curr Med Chem; 2018; 25(29):3435-3454. PubMed ID: 29473494
    [TBL] [Abstract][Full Text] [Related]  

  • 27. redox Signaling by 8-nitro-cyclic guanosine monophosphate: nitric oxide- and reactive oxygen species-derived electrophilic messenger.
    Fujii S; Akaike T
    Antioxid Redox Signal; 2013 Oct; 19(11):1236-46. PubMed ID: 23157314
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An update on nitric oxide and its benign role in plant responses under metal stress.
    Sahay S; Gupta M
    Nitric Oxide; 2017 Jul; 67():39-52. PubMed ID: 28456602
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nitric oxide-derived oxidants with a focus on peroxynitrite: molecular targets, cellular responses and therapeutic implications.
    Calcerrada P; Peluffo G; Radi R
    Curr Pharm Des; 2011 Dec; 17(35):3905-32. PubMed ID: 21933142
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nitro-fatty acids in plant signaling: New key mediators of nitric oxide metabolism.
    Mata-Pérez C; Sánchez-Calvo B; Padilla MN; Begara-Morales JC; Valderrama R; Corpas FJ; Barroso JB
    Redox Biol; 2017 Apr; 11():554-561. PubMed ID: 28104576
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nitro-fatty acids: electrophilic signaling molecules in plant physiology.
    Di Fino L; Arruebarrena Di Palma A; Perk EA; García-Mata C; Schopfer FJ; Laxalt AM
    Planta; 2021 Nov; 254(6):120. PubMed ID: 34773515
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The origins of nitric oxide and peroxynitrite research in Uruguay: 25 years of contributions to the biochemical and biomedical sciences.
    Radi R
    Nitric Oxide; 2019 Jun; 87():83-89. PubMed ID: 30872109
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitration of plant apoplastic proteins from cell suspension cultures.
    Szuba A; Kasprowicz-Maluśki A; Wojtaszek P
    J Proteomics; 2015 Apr; 120():158-68. PubMed ID: 25805245
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein and lipid nitration: role in redox signaling and injury.
    Rubbo H; Radi R
    Biochim Biophys Acta; 2008 Nov; 1780(11):1318-24. PubMed ID: 18395525
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Factors determining the selectivity of protein tyrosine nitration.
    Souza JM; Daikhin E; Yudkoff M; Raman CS; Ischiropoulos H
    Arch Biochem Biophys; 1999 Nov; 371(2):169-78. PubMed ID: 10545203
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nitration of unsaturated fatty acids by nitric oxide-derived reactive nitrogen species peroxynitrite, nitrous acid, nitrogen dioxide, and nitronium ion.
    O'Donnell VB; Eiserich JP; Chumley PH; Jablonsky MJ; Krishna NR; Kirk M; Barnes S; Darley-Usmar VM; Freeman BA
    Chem Res Toxicol; 1999 Jan; 12(1):83-92. PubMed ID: 9894022
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NO-dependent protein nitration: a cell signaling event or an oxidative inflammatory response?
    Schopfer FJ; Baker PR; Freeman BA
    Trends Biochem Sci; 2003 Dec; 28(12):646-54. PubMed ID: 14659696
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of a novel double-sandwich enzyme-linked immunosorbent assay method for assaying chondroitin sulfate proteoglycans that bear 3-nitrotyrosine core protein modifications, a previously unrecognized proteoglycan modification in hydrocephalus.
    Krueger RC
    Anal Biochem; 2004 Feb; 325(1):52-61. PubMed ID: 14715284
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hypothesis: Nitro-fatty acids play a role in plant metabolism.
    Sánchez-Calvo B; Barroso JB; Corpas FJ
    Plant Sci; 2013 Feb; 199-200():1-6. PubMed ID: 23265313
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ANSID: A Solid-Phase Proteomic Approach for Identification and Relative Quantification of Aromatic Nitration Sites.
    Nuriel T; Whitehouse J; Ma Y; Mercer EJ; Brown N; Gross SS
    Front Chem; 2015; 3():70. PubMed ID: 26779476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.