These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3134046)

  • 1. Ribonuclease T1 is stabilized by cation and anion binding.
    Pace CN; Grimsley GR
    Biochemistry; 1988 May; 27(9):3242-6. PubMed ID: 3134046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamics of ribonuclease T1 denaturation.
    Hu CQ; Sturtevant JM; Thomson JA; Erickson RE; Pace CN
    Biochemistry; 1992 May; 31(20):4876-82. PubMed ID: 1591247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational stability and activity of ribonuclease T1 with zero, one, and two intact disulfide bonds.
    Pace CN; Grimsley GR; Thomson JA; Barnett BJ
    J Biol Chem; 1988 Aug; 263(24):11820-5. PubMed ID: 2457027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spermine stabilization of folded ribonuclease T1.
    Walz FG; Kitareewan S
    J Biol Chem; 1990 May; 265(13):7127-37. PubMed ID: 1970567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH dependence of the urea and guanidine hydrochloride denaturation of ribonuclease A and ribonuclease T1.
    Pace CN; Laurents DV; Thomson JA
    Biochemistry; 1990 Mar; 29(10):2564-72. PubMed ID: 2110472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfate anion stabilization of native ribonuclease A both by anion binding and by the Hofmeister effect.
    Ramos CH; Baldwin RL
    Protein Sci; 2002 Jul; 11(7):1771-8. PubMed ID: 12070329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilization of a protein by guanidinium chloride.
    Mayr LM; Schmid FX
    Biochemistry; 1993 Aug; 32(31):7994-8. PubMed ID: 8347603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of Glu 58, an amino acid of the active center of ribonuclease T1, to Gln and Asp.
    Nishikawa S; Morioka H; Fuchimura K; Tanaka T; Uesugi S; Ohtsuka E; Ikehara M
    Biochem Biophys Res Commun; 1986 Jul; 138(2):789-94. PubMed ID: 2874806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of guanosine-free ribonuclease T1, complexed with vanadate (V), suggests conformational change upon substrate binding.
    Kostrewa D; Choe HW; Heinemann U; Saenger W
    Biochemistry; 1989 Sep; 28(19):7592-600. PubMed ID: 2514790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational stability of ribonuclease T1. I. Thermal denaturation and effects of salts.
    Oobatake M; Takahashi S; Ooi T
    J Biochem; 1979 Jul; 86(1):55-63. PubMed ID: 39067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding of ribonuclease T1. 2. Kinetic models for the folding and unfolding reactions.
    Kiefhaber T; Quaas R; Hahn U; Schmid FX
    Biochemistry; 1990 Mar; 29(12):3061-70. PubMed ID: 2110824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hexacyanochromate ion as a paramagnetic anion probe for active sites of enzymes.
    Inagaki F; Shimada I
    J Inorg Biochem; 1986; 28(2-3):311-7. PubMed ID: 3100720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence lifetime quenching and anisotropy studies of ribonuclease T1.
    James DR; Demmer DR; Steer RP; Verrall RE
    Biochemistry; 1985 Sep; 24(20):5517-26. PubMed ID: 3935161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of tryptic hydrolysis of the arginine-valine bond in folded and unfolded ribonuclease T1.
    Pace CN; Barrett AJ
    Biochem J; 1984 Apr; 219(2):411-7. PubMed ID: 6430267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The contribution of metal ions to the conformational stability of ribonuclease T1: crystal versus solution.
    Deswarte J; De Vos S; Langhorst U; Steyaert J; Loris R
    Eur J Biochem; 2001 Jul; 268(14):3993-4000. PubMed ID: 11453993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studying salt effects on protein stability using ribonuclease t1 as a model system.
    Beauchamp DL; Khajehpour M
    Biophys Chem; 2012 Feb; 161():29-38. PubMed ID: 22197350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monovalent cation-induced conformational change in glucose oxidase leading to stabilization of the enzyme.
    Ahmad A; Akhtar MS; Bhakuni V
    Biochemistry; 2001 Feb; 40(7):1945-55. PubMed ID: 11329261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational stability of ribonuclease T1. II. Salt-induced renaturation.
    Oobatake M; Takahashi S; Ooi T
    J Biochem; 1979 Jul; 86(1):65-70. PubMed ID: 113396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Analysis of the guanyl-specific ribonuclease structures in fungi: determination of the amino acid sequence and prediction of the secondary ribonuclease structure in Penicillium brevicompactum].
    Shliapnikov SV; Iakovlev GI; Kulikov VA
    Dokl Akad Nauk SSSR; 1985; 281(1):226-9. PubMed ID: 3922722
    [No Abstract]   [Full Text] [Related]  

  • 20. Analysis of equilibrium and kinetic measurements to determine thermodynamic origins of stability and specificity and mechanism of formation of site-specific complexes between proteins and helical DNA.
    Record MT; Ha JH; Fisher MA
    Methods Enzymol; 1991; 208():291-343. PubMed ID: 1779839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.